Supporting Information: Large-scale computational identification of p-type oxide semiconductors by hierarchical screening

Yong Youn,^{1‡} Miso Lee,^{1‡} Doyeon Kim,¹ Jae Kyeong Jeong,² Youngho Kang,^{3*} and Seungwu Han^{1*}

¹Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea

²Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea

³Materials Data Center, Korea Institute of Materials Science, Changwon 51508, Korea

* (Y.K.) E-mail: thehoya84@gmail.com

* (S.H.) E-mail: hansw@snu.ac.kr

Figure S1. FEH versus (a) oxygen partial weight at the valence band top (w_0) and (b) fundamental band gap with PBE (E_g^{PBE}) for binary, selected ternary and randomly chosen ternary oxides. Vertical and horizontal dashed lines indicate the FEH and simple descriptor criteria for p-type, respectively.

Figure S2. Comparison of oxygen partial weight. Oxygen partial weight by HSE versus oxygen partial weight by PBE in our database (black) and AFLOW (blue or red). In AFLOW database, compounds containing a series of noble metal (Ag, Au, Pd and Pt) have higher w_0 compared with w_0 by HSE. In our database, there is little difference in root mean square errors (RMSEs) of two groups.

Table S1. RMSEs of w_0 in AMP² and AFLOW with HSE.

RMSE	AMP ²	AFLOW
w/ noble metals	0.039	0.256
w/o noble metals	0.041	0.086

Figure S3. (a) The unit-cell structure of $La_2O_2S_2$ (*Cmce*). (b) Band structure and partial density of states. (The VBM is set to zero.) (c) The formation energies of intrinsic and hydrogen defects at the oxygen-rich condition. For (b), PBE functional is used with scissor-correction with the HSE gap.

Figure S4. (a) The unit-cell structure of AlScOC. (b) Band structure and partial density of states. (The VBM is set to zero.) (c) The formation energies of intrinsic and hydrogen defects at the oxygen-rich condition with PBE calculation. For (b), PBE functional is used with scissor-correction with the HSE gap.

Figure S5. (a) The unit-cell structure of Sr_3BPO_3 . (b) Band structure and partial density of states. (The VBM is set to zero.) (c) The formation energies of intrinsic and hydrogen defects at the oxygen-rich condition with PBE calculation. For (b), PBE functional is used with scissor-correction with the HSE gap.

Name	ICSD	Space group	$E_{\rm g}~({\rm eV})$	$E_s^{qu}(\mathrm{eV})$	FEH (eV)	$m_{\rm h}^{*}(m_{\rm e})$
NaNbO ₂	29282	P6 ₃ /mmc	2.25	2.40	2.14	0.74
LiNbO ₂	451	P6 ₃ /mmc	2.40	2.40	1.21	0.74
CaNb ₂ O ₄	88779	Pbcm	2.05	2.24	1.14	0.75
Mg ₃ Nb ₆ O ₁₁	62662	P3m1	1.21	1.67	0.47	2.07
Cr ₂ O ₃	25781	R3c	3.88	4.00	0.00	3.92
CaFeSi ₂ O ₆	10226	<i>C</i> ₂ / <i>c</i>	3.57	3.57	-0.05	3.59
Ba ₂ FeGe ₂ O ₇	22358	$P\overline{4}2_1m$	2.18	2.18	-0.06	4.54
NaVO ₂	420138	C2/m	2.44	2.46	-0.09	1.36
Ta ₂ VO ₆	23600	P ₄₂ /mnm	1.51	1.59	-0.12	3.18
CaFeO₂	246244	I41/amd	1.83	1.83	-0.14	1.46
Li ₂ FeSiO ₄	161649	Pmn2 ₁	3.59	3.59	-0.19	4.14
Fe ₂ GeO ₄	93973	Fd3m	1.69	1.75	-0.20	21.90
NaTiSi ₂ O ₆	281615	PĪ	2.73	2.78	-0.30	2.99
NbO ₂	35181	<i>I</i> 41	1.30	1.75	-0.30	2.88
Fe ₂ SiO ₄	41003	P6 ₃ /mmc	2.44	2.55	-0.33	22.67
Cr ₂ SiO ₄	75639	P6 ₃ /mmc	3.01	3.17	-0.34	3.19
LiFeAsO ₄	245182	Pnma	2.71	2.77	-0.35	1.83
NaTiSi ₂ O ₆	39194	<i>C</i> ₂ / <i>c</i>	2.73	2.75	-0.35	3.29
Li ₂ FeSiO ₄	246132	P2,	3.62	3.69	-0.38	7.44
Cr ₂ MnO ₄	167400	Fd3m	3.69	3.81	-0.43	5.17
LiTiSi ₂ O ₆	96292	C2/c	2.74	2.75	-0.45	3.51
FeGeO ₃	89788	I4/mmm	1.54	1.54	-0.50	17.40
Ba ₂ VO ₄	40708	Fd3m	2.46	2.49	-0.55	29.86
FeTe ₆ O ₁₃	417293	P ₄₂ /ncm	2.46	2.74	-0.63	93.05
FeB ₂ O ₄	420403	<i>C</i> ₂ / <i>c</i>	3.15	3.15	-0.63	5.43
FeTiO ₃	9805	R3	2.13	2.13	-0.64	5.15
WO ₂	74774	Pnma	1.52	1.59	-0.64	1.62
Mn ₂ TiO ₄	22313	R3	2.19	2.19	-0.65	1.82
Mn ₅ VO ₈	262807	PĪ	1.88	1.90	-0.66	2.14
KCrO ₂	425293	P6 ₃ /mmc	4.22	4.31	-0.67	2.98
AgCoO ₂	246157	P6 ₃ /mmc	2.70	3.46	-0.68	3.99
CrWO ₄	8269	C ₂ /m	1.53	1.63	-0.69	1.14
LaCrO ₃	91271	R3c	3.38	3.40	-0.71	2.67

Table S2. Names, ICSD numbers, space groups, fundamental and optical band gaps and hole effectivemasses of Group I: unpaired electrons in Figure 5b.

Name	ICSD	Space group	$E_{\rm g}~({\rm eV})$	$E_s^{opt}(eV)$	FEH (eV)	$m_{\rm h}^{*}(m_{\rm e})$
KCrO ₂	40267	R∃m	4.22	4.36	-0.72	2.83
K ₃ FeO ₂	73215	$P_{4_1 2_1 2}$	2.17	2.30	-0.73	11.06
FeTi ₂ O ₅	37231	Стст	1.68	1.82	-0.76	13.30
MgCr ₂ O ₄	290588	I41/amd	4.20	4.20	-0.76	3.60
MgCr ₂ O ₄	290589	C2/c	4.19	4.19	-0.79	3.40
MgCr ₂ O ₄	52386	Fd3m	4.19	4.19	-0.79	3.39
CaFeTi₂O ₆	79353	P ₄₂ /nmc	1.47	1.47	-0.80	12.58
Rb ₅ Co ₂ O ₄	73190	$P\overline{1}$	2.20	2.41	-0.85	108.98
BVO ₃	45060	P_{2_1}/c	2.61	2.71	-0.90	6.95
Li ₆ CoO ₄	62688	P_{2_1}/c	3.87	3.87	-0.91	3.01
Rb ₃ CoO ₂	94437	Pnma	2.22	2.30	-0.94	62.96
PbVO ₃	152276	P4mm	2.23	2.23	-0.98	3.29
ZnCr ₂ O ₄	50047	Fd3m	4.02	4.02	-0.99	4.16

Name	ICSD	Space group	$E_{\rm g}~({\rm eV})$	$E_{g}^{qu}(\mathrm{eV})$	FEH (eV)	$m_{\rm h}^{*}(m_{\rm e})$
Na ₂ Pd ₃ O ₄	6157	Immm	2.00	2.01	0.74	0.88
MgPt ₃ O ₆	35340	Cmmm	1.28	1.28	0.25	0.90
Na ₂ PtO ₂	25018	Immm	3.15	3.32	0.21	2.64
CoRh ₂ O ₄	109301	Fd3m	2.42	3.15	0.17	3.81
CuRhO ₂	29214	R3m	2.22	2.96	0.06	2.23
ZnPt ₃ O ₆	35339	Cmmm	1.26	1.26	0.01	0.90
CdPt ₃ O ₆	35407	Cmmm	1.16	1.16	0.01	0.99
Li ₂ PdO ₂	61199	Immm	3.35	3.85	-0.02	2.49
AgRhO ₂	261561	R3m	2.27	2.62	-0.10	2.03
NaRhO ₂	66280	R3m	3.32	3.39	-0.28	6.25
Rh ₂ O ₃	9206	Pbca	2.43	2.43	-0.32	6.29
Rh ₂ O ₃	33645	R3c	2.54	2.70	-0.41	3.21
CdRh ₂ O ₄	28954	Amm2	2.75	2.75	-0.48	3.29
MgRh ₂ O ₄	109299	Fd3m	3.11	3.11	-0.48	8.12
ZnRh ₂ O ₄	109298	Fd3m	2.90	2.91	-0.53	4.55
PdBi ₂ O ₄	200145	P4/ncc	1.59	2.24	-0.57	1.13
K ₂ PdO ₂	6158	Immm	3.56	3.79	-0.62	2.62
CaRh ₂ O ₄	170597	Pnma	2.77	2.79	-0.66	11.17
KPd ₂ O ₃	248051	R3m	1.90	2.18	-0.67	2.28
Na ₂ PtO ₃	25020	Fddd	3.29	3.36	-0.93	2.13
LiRhO ₂	59179	Fd3m	3.51	3.51	-0.97	16.95

Table S3. Names, ICSD numbers, space groups, fundamental and optical band gaps and hole effective masses of Group I: quasi-closed shell d⁶ (Rh³⁺) or d⁸ (Pd²⁺ and Pt²⁺) in Figure 5c.

Name	ICSD	Space group	$E_{\rm g}$ (eV)	$E_{s}^{qs}(\mathrm{eV})$	FEH (eV)	$m_{\rm h}^{*}(m_{\rm e})$
LiCuO	40156	I4/mmm	2.59	3.10	o.88	2.77
CuLaOTe	154591	P4/nmm	2.24	2.24	0.52	0.53
Cu ₂ O	63281	Pn∃m	2.04	2.04	0.28	1.36
CuAlO ₂	25593	R3m	3.48	4.15	0.19	2.73
CuAlO ₂	95661	P6 ₃ /mmc	3.58	3.94	0.18	3.64
CuBiOSe	74475	P4/nmm	1.15	1.28	0.18	0.79
CuCrO ₂	82065	P6 ₃ /mmc	2.86	3.71	0.11	3.65
CuCrO ₂	26676	I4/mmm	2.90	3.63	0.10	4.43
NaCuO	15099	ΙĀ	2.79	2.97	0.08	9.01
CuLaOSe	96758	P4/nmm	2.84	2.84	-0.02	0.78
CuGaO ₂	95664	P6 ₃ /mmc	2.41	3.78	-0.06	3.41
CuGaO ₂	188625	R3m	2.38	4.04	-0.08	2.26
Cu ₂ BaO ₂	9456	I41/amd	2.75	2.75	-0.12	2.34
CuLaOS	86249	P4/nmm	3.02	3.02	-0.30	1.02
CuLa ₃ O ₂ S ₃	96438	Pnma	1.87	1.87	-0.31	0.67
CuInO ₂	95670	P6 ₃ /mmc	1.65	2.62	-0.32	3.10
CuInO ₂	91855	R3m	1.60	2.85	-0.36	2.62
CuFeO₂	246912	R∃m	1.54	1.54	-0.50	1.97
NaCu ₂ O ₂	169713	Pnma	2.67	2.83	-0.51	2.19
AgCrO ₂	25624	R3m	2.92	3.46	-0.53	2.58
CuMnO ₂	30379	Fd3m	1.88	2.21	-0.54	1.31
LiCu ₂ O ₂	69051	P ₄₂ /nmc	2.19	2.79	-0.62	2.06
CuInW ₂ O ₈	74944	C2/c	1.54	1.68	-0.67	3.70
LiAg ₃ O ₂	4204	Ibam	1.97	1.97	-0.68	0.75
CuScO ₂	151929	P6 ₃ /mmc	3.96	3.78	-0.68	4.35
AgAlO ₂	300020	P6 ₃ /mmc	2.98	4.33	-0.68	2.38
CuScO ₂	65547	R∃m	3.68	3.70	-0.69	2.65
KCuO	25695	I4	2.94	2.99	-0.69	5.67
CuReO ₄	416510	R3m	2.71	2.71	-0.75	5.84
RbCuO	15100	IĀ	2.78	2.81	-0.78	6.04
Cu ₂ PbO ₂	400657	C2/c	1.65	1.77	-0.78	1.98
NaAgO	40153	I4/mmm	2.47	3.73	-0.80	5.13
Cu ₂ SrO ₂	25002	I41/amd	3.15	3.15	-0.80	1.58

Table S4. Names, ICSD numbers, space groups, fundamental and optical band gaps and hole effectivemasses of Group I: closed shell d^{10} (Cu¹⁺ & Ag¹⁺) in Figure 5d.

Name	ICSD	Space group	$E_{\rm g}~({\rm eV})$	$E_s^{out}(\mathrm{eV})$	FEH (eV)	$m_{\rm h}^{*}(m_{\rm e})$
CuYW ₂ O ₈	36622	<i>P</i> 1	2.33	2.52	-0.84	2.74
CuVO ₃	19046	R3	1.56	1.63	-0.89	3.59
CuYO ₂	60848	R∃m	4.17	4.06	-0.92	3.21
AgFeO ₂	242114	R∃m	1.96	2.28	-0.92	0.79
AgFeO ₂	242115	P6 ₃ /mmc	2.10	2.10	-0.94	1.02
CuYO ₂	35580	P6 ₃ /mmc	4.20	4.48	-0.95	3.97
Na ₃ AgO ₂	24817	Ibam	2.34	3.69	-0.97	0.93
K ₃ CoO ₂	73212	Pnma	2.52	2.52	-0.97	117.33
NaAg ₃ O ₂	9627	Ibam	1.82	1.82	-0.97	0.96
CuMnVO ₄	170136	Стст	2.25	2.43	-0.98	2.42

Name	ICSD	Space group	$E_{\rm g}~({\rm eV})$	$E_{g}^{qu}(\mathrm{eV})$	FEH (eV)	$m_{\rm h}^{*}(m_{\rm e})$
SnO	15516	$P\overline{3}m_1$	0.71	2.79	0.65	1.25
K ₂ Sn ₂ O ₃	40463	I2,3	1.85	1.89	0.20	0.32
$Rb_2Sn_2O_3$	24816	R∃m	1.66	1.66	-0.17	0.28
K ₂ Sn ₂ O ₃	2216	<i>R</i> ₃	1.76	1.76	-0.37	0.26
In ₆ PtGa ₂ O	411505	Fm3m	1.66	1.67	-0.70	7.13
In ₇ IrGeO ₈	417829	F43m	1.42	1.46	-0.85	6.94
SnO	20624	Pmn2 ₁	1.95	2.70	-0.92	0.99
In ₆ PtGe ₂ O	170897	Fm3m	2.56	2.78	-0.93	3.11

Table S5. Names, ICSD numbers, space groups, fundamental and optical band gaps and hole effectivemasses of Group II: s in Figure 5e.

Name	ICSD	Space group	$E_{\rm g}~({\rm eV})$	E_{s}^{qs} (eV)	FEH (eV)	$m_{\rm h}^{*}(m_{\rm e})$
Na ₂ Fe ₂ OSe ₂	186502	I4/mmm	1.48	1.51	1.98	1.04
ZrOS	36111	P4/nmm	1.57	1.57	0.67	0.54
CuLaOTe	154591	P4/nmm	2.24	2.24	0.52	0.53
La ₂ O ₂ Te	27004	I4/mmm	3.03	3.12	0.20	0.65
CuBiOSe	74475	P4/nmm	1.15	1.28	0.18	0.79
Na ₅ CoO ₂ S	412978	P4/mmm	1.89	2.53	0.16	2.28
$La_2Mn_2O_3Se_2$	181385	I4/mmm	2.30	2.62	0.01	2.35
CuLaOSe	96758	P4/nmm	2.84	2.84	-0.02	0.78
La ₂ O ₂ S ₂	68498	Стсе	2.50	3.12	-0.06	o.86
La ₂ O ₂ S ₂	2455	Pbcm	2.59	3.21	-0.10	o.86
La ₂ SiO ₄ Se	59941	Pbcm	3.75	3.82	-0.15	1.07
CuLaOS	86249	P4/nmm	3.02	3.02	-0.30	1.02
CuLa ₃ O ₂ S ₃	96438	Pnma	1.87	1.87	-0.31	0.67
La ₄ O ₄ Se ₃	419128	Amm2	1.63	1.68	-0.42	0.32
Sc ₂ O ₂ S	2450	P6 ₃ /mmc	3.25	3.83	-0.64	1.00
$Ba_3V_2O_3S_4$	279607	I4/mmm	2.02	2.03	-0.66	4.88
K ₃ Sb ₇ O ₉ S ₃	4215	P6 ₃	2.34	2.53	-0.70	5.37
Bi ₂ O ₂ S	29451	Pnnm	1.51	1.98	-0.88	1.12
Y ₂ OS ₂	67503	P_{2_1}/c	3.56	3.67	-0.89	1.49
AgLaOS	89020	P4/nmm	2.48	2.48	-0.90	0.82

Table S6. Names, ICSD numbers, space groups, fundamental and optical band gaps and hole effectivemasses of Group III: oxychalcogenides in Figure 5f.

Name	ICSD	Space group	$E_{\rm g}~({\rm eV})$	$E_{s}^{qe}(eV)$	FEH (eV)	$m_{\rm h}^{*}$ $(m_{\rm e})$
AlScOC	419683	R∃m	1.21	2.48	1.68	0.43
La ₃ SbO ₃	380456	<i>C</i> ₂ /m	1.28	1.33	1.09	0.48
Ca ₄ Sb ₂ O	16353	I4/mmm	1.59	1.89	1.09	0.52
Ca ₄ As ₂ O	68203	I4/mmm	1.81	2.06	0.89	0.54
Ca ₄ Bi ₂ O	416137	I4/mmm	1.33	1.67	0.88	0.51
Ba ₃ TaAs ₃ O	280155	Pnma	1.62	1.63	0.64	0.88
Sr ₃ TaAs ₃ O	409567	Pnma	1.87	1.90	0.63	1.00
ZnYAsO	163780	P4/nmm	1.84	1.85	0.57	0.55
Ba ₃ NbAs ₃ O	408853	Pnma	1.60	1.65	0.46	0.91
ZnYOP	418523	R3m	2.04	2.10	0.44	0.44
Ba ₃ BPO ₃	402017	P6 ₃ /mmc	2.21	2.51	0.42	0.80
Ca ₄ OP ₂	68202	I4/mmm	2.04	2.28	0.41	0.80
ZnLaAsO	420204	P4/nmm	1.35	1.35	0.29	0.55
Sr ₄ As ₂ O	33904	I4/mmm	1.79	1.83	0.25	0.85
Sr ₃ BPO ₃	401207	P6 ₃ /mmc	3.01	3.27	0.14	1.15
Ba ₃ BAsO ₃	402682	P6 ₃ /mmc	2.24	2.47	0.08	0.78
ZnLaOP	85777	P4/nmm	1.45	1.45	-0.02	0.72
Sr ₄ OP ₂	33903	I4/mmm	1.91	1.95	-0.10	1.36
Ba ₃ ZnON ₂	55536	P4/mmm	1.19	1.23	-0.24	0.75
K ₆ NbAs ₃ O	409630	P213	1.70	1.76	-0.28	18.53
Ba ₄ Sb ₂ O	402284	I4/mmm	1.09	1.09	-0.50	0.34
KBa ₄ Sb ₃ O	410747	I4/mcm	1.69	1.74	-0.55	2.18
LaTaON ₂	411138	<i>C</i> ₂ /m	1.60	1.60	-0.94	0.50
Ba ₄ As ₂ O	33905	I4/mmm	1.21	1.21	-1.00	0.40

Table S7. Names, ICSD numbers, space groups, fundamental and optical band gaps and hole effective masses of Group III: oxypnictides in Figure 5g.