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ABSTRACT: Ternary metal oxides are crucial components in a
wide range of applications and have been extensively cataloged in
experimental materials databases. However, there still exist cation
combinations with unknown stability and structures of their
compounds in oxide forms. In this study, we employ extensive
crystal structure prediction methods, accelerated by machine-
learned potentials, to investigate these untapped chemical spaces.
We examine 181 ternary metal oxide systems, encompassing most
cations except for partially filled 3d or f shells, and determine their
lowest-energy crystal structures with representative stoichiometry
derived from prevalent oxidation states or recommender systems.
Consequently, we discover 45 ternary oxide systems containing
stable compounds against decomposition into binary or elemental
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phases, the majority of which incorporate noble metals. Comparisons with other theoretical databases highlight the strengths and
limitations of informatics-based material searches. With a relatively modest computational resource requirement, we contend that
heuristic-based structure searches, as demonstrated in this study, offer a promising approach for future materials discovery endeavors.

B INTRODUCTION

Owing to large electronegativity, oxygen forms stable
compounds with practically every metal atom. The ternary
metal oxide, incorporating two species of metal atoms with
distinct sizes and electronic shell structures, exhibits a variety
of crystal structures and functionalities. Some well-known
examples are BaTiO; for ferroelectrics,’ BiVO, for water
splitting,” BiFeO, for photovoltaics,” LiCoO, for cathodes in
Li-ion batteries," and LaAlO; and SrTiO; for high-k
dielectrics.” As such, ternary metal oxides constitute one of
the most plentiful entries in materials databases, such as the
Inorganic Crystal Structure Database (ICSD).

Despite the rich library, roughly one-third of all of the
possible cation combinations of ternary metal oxides are yet to
be cataloged in the experimental databases.” This prompts the
question of whether stable compounds exist within these
uncataloged chemical spaces, and if they do, what their
equilibrium structures are. The discovery of new ternary metal
oxides through experiments alone is resource-intensive and
time-consuming. Alternatively, theoretical databases such as
the Materials Project (MP),” Open Quantum Materials
Database (OQMD),” and Automatic-FLOW (AFLOW)'®
provide hypothetical structures that are obtained by mainly
exploiting known prototypes.'' ~'? For instance, Hautier et al.
discovered hypothetical ternary oxides using the probabilistic
prototype searching method.” However, such data-mining
approaches cannot find ground states with prototypes outside
the database.”’ This challenge can be addressed by directly
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searching equilibrium structures, a procedure called crystal
structure prediction (CSP), in which heuristic approaches are
employed to find the lowest-energy structure in the
configuration space under a given composition.zz’23 However,
the effectiveness of this approach is limited due to the high
computational cost of density-functional theory (DFT)
calculations, and an exhaustive search of the structure space,
which is often necessary for finding complicated equilibrium
phases of ternary metal oxides, is not practically achievable.”*

In recent years, there has been growing interest in machine-
learned potentials (MLPs) as an alternative to the DFT
method, given their ability to calculate the energy of structures
several orders of magnitude faster than DFT, while maintaining
similar accuracy.”® In our previous work, we found that the
MLPs trained with disordered phases (amorphous and liquid
phases) have shown high fidelity as a surrogate model of DFT
for the heuristic method of CSP.”° Based on this idea, we
developed a systematic CSP program called SPINNER
(Structure Prediction of Inorganic crystals using Neural
Network potentials with Evolutionary and Random searches),
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utilizing MLPs within the evolutionary algorithm.”” On the
benchmark test on the experimental structure database,
SPINNER identified ~80% ground-state structures among 60
ternary compounds with diverse crystal symmetries, doing so
10* to 10° times faster than DFT-based heuristic methods.

In this study, by harnessing the high speed and accuracy of
SPINNER, we examine 181 ternary metal oxide systems, none
of which have compositions registered in the experimental
databases, encompassing most cations except for partially filled
3d or f shells, and determine their lowest-energy crystal
structures with representative stoichiometry derived from
prevalent oxidation states or recommender systems. Con-
sequently, we discover 45 ternary oxide systems that contain
stable compounds relative to elements or binary compounds,
the majority of which incorporate noble metals. Comparisons
with other theoretical databases highlight the strengths and
limitations of informatics-based material searches.

B METHODS

Training Machine-Learned Potentials. The training sets are
generated by following mostly our previous study”’ except for slight
modifications to reduce the computational cost. In detail, the initial
MLP is trained over the melt-quench-annealing trajectory at the DFT
level, which does not require any a priori information on the
crystalline phase. The melt-quench-annealing simulation starts by
premelting 60—70 atoms under the given composition at 4000 K over
4.5 ps. The simulation volume is adjusted such that the external
pressure is close to zero. A temporary melting temperature (Ty) is
then searched, and the liquid-phase simulation is conducted at T, for
8 ps, followed by quenching to 300 K with a cooling rate of 200 K
ps~'. Finally, amorphous structures are sampled by annealing the
system at 500 K for 4 ps. All DFT calculations are ?erformed with the
Vienna Ab initio Simulation Package (VASP)*® using projector
augmented-wave (PAW) pseudopotentials™ and the Perdew—Burke—
Ernzerhof (PBE) functional for exchange—correlation energy of
electrons.’® The cutoff energies for DFT molecular dynamics
simulations are determined by the convergence test for premelted
structures such that the energy, forces, and stress tensors converge to
within 20 meV atom ™', 0.3 eV A7, and 10 kbar, respectively. A single
k-point, either I" or (1/4, 1/4, 1/4)," is adopted for the Brillouin-
zone integration, and this choice is determined by the same
convergence tests that determined the cutoff energies.

We adopt Behler—Parrinello-type neural network potentials
(NNPs)32 with the symmetry function vectors as input features, as
implemented in the SIMPLE-NN package.>® For each pair of atomic
species, 8 radial and 18 angular components are employed with cutoff
radii of 6 and 4.5 A, respectively. The NNPs are trained up to 500
epochs. The resulting root-mean-square errors (RMSE) of the
validation set are 10 meV atom™, 0.5 eV A™! and 20 kbar on
average for the energy, force, and stress components, respectively. The
30—30 hidden layers are used in multilayer perceptrons. The input
vectors are first decorrelated using principal component analysis
(PCA) and then whitened to accelerate the learning speed.’* The
weight parameters of NNPs are updated utilizing a momentum-based
Adam optimizer®® with a batch size of 10. To prevent overfitting, an
L2 regularization term is included in the loss function. 10% of the data
is randomly selected for the validation set. To improve inference
accuracy for ordered crystal structures, the NNPs are iteratively
retrained with low-energy structures identified in the preliminary CSP
as detailed in ref 27. In order to further estimate the errors against test
structures that are not included in the training or validation set, we
monitor the root-mean-square errors (RMSE) of structures generated
through the evolutionary algorithm. The average RMSE value is 23
meV atom™!, which is sufficiently small to be used in structure
searching.

Evolutionary Algorithm. With the refined NNPs, we perform up
to 1000 generations of the main CSP using the evolutionary algorithm
using SPINNER.”” The structures are generated through random

seeding, permutation, and lattice mutation in the ratios of 70, 20, and
10% respectively. The population of one generation is capped at 60.
After the whole generation, the final candidate structures within the
lowest 50 meV atom™ energy window are selected, and their DFT
energies are calculated at the PBE level with full structural relaxations
performed by an automated package, AMP2*® It is known that the
error of the computed formation energy of oxides with respect to
experimental data is lower using the stron§ly constrained and
appropriately normed (SCAN) functional’”*® compared to the
generalized gradient approximation (GGA) functional, though at
the expense of 3—4 times increase in computational cost.’”*’
Therefore, we identify the final ground state based on the SCAN
energies, evaluated with the structures fixed to those relaxed by PBE.
We have confirmed that this energy evaluation scheme yields a
reasonable accuracy when compared with the full relaxations using the
SCAN functionals (see Figures S1 and S2).

Hull Energy Calculation. In order to determine the relative
stability of the identified equilibrium structure compared to known
binary and elemental phases, we evaluate the hull energies (Ej;) of
the final candidates through full relaxations employing the SCAN
functional. We employ the Pymatgen library to construct the ternary
phase diagram using known binary and elemental phases and estimate
the relative energy along the energy convex hull*'~** (see Figure la).
We collect all experimental elemental and binary compounds from the
MP database that can be derived from the target system and calculate
their SCAN energies. For the accurate evaluation of total energies and
the hull energy, we use PAW pseudopotentials that include semicore
electrons as valence states. The cutoff energies and the k-point meshes
are determined by the convergence test, ensuring that the energy
values converge to within 2 meV atom™'. We conduct structure
optimizations until the force converges to within 0.02 eV A™". The
selection of stoichiometry as illustrated in Figure 1b will be explained
in the next section.

B RESULTS

Target Chemical Spaces. The target metal elements (A or
B) in ternary metal oxide systems (A—B—O) are selected
according to the following procedure: We first exclude partially
filled 3d transition elements (V—Cu) because (i) the current
generation of NNPs has not been fully tested on the subtle
energies associated with diverse magnetisms in 3d metals***
and (ii) the relevant compounds are mostly identified in ICSD.
(We validate that the complexity associated with diverse
magnetisms is absent in 4d and Sd metals because of the small
magnetic moments; see Figure S3 and the associated text for
details.) Among the lanthanides (La—Yb), we only include La.
Moreover, we omit semimetals (B, Si, Ge, As, Sb, Te, and Po)
and radioactive elements (Tc and Po). This results in a set of
39 elements (Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Sc, Y, La,
Ti, Zr, Hf, Nb, Ta, Mo, W, Re, Ru, Os, Rh, Ir, Pd, Pt, Ag, Au,
Zn, Cd, Hg, Al, Ga, In, T, Sn, Pb, and Bi), giving rise to 741
elemental combinations (see Figure 2). From these, we
exclude chemical systems that contain any compositions
already registered in experimental databases such as the
Inorganic Crystal Structure Database (ICSD),° International
Centre for Diffraction Data (ICDD),** and Crystallography
Open Database (COD)."” (They are marked as gray tiles in
Figure 2.) We also refer to FACT oxide (FToxid)** phase
diagrams and exclude a system if the phase diagram precludes
the existence of any ternary compounds in the corresponding
space (see “X” marks in Figure 2). We omit Bi as all of the
possible combinations already exist experimentally. As a result,
we establish a total of 181 elemental combinations as the
search space for this study, which are represented by nongray
tiles in Figure 2. The number of target systems for each
element is represented by pale-blue bars at the top. As
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Figure 1. (a) Schematic representation of the hull energy evaluation.
The energy convex hull of the ternary compositional space is
constructed using SCAN energies of known binary and elemental
phases. The hull energy is determined by calculating the energy
difference between the lowest energy obtained from SPINNER and
the energy of the convex hull surface for the corresponding
composition. (b) Two approaches for selecting a representative
composition (AxByOz). In the first method (left), the representative
composition is chosen based on the common oxidation state defined
by the lowest formation energy of the binary oxides. It involves
combining binary oxides with a common oxidation state in a 1:1 ratio.
In the second method (right), if the highest-scoring composition
suggested by the recommender system consists of cations in oxidation
states different from the common oxidation state, it is also considered.

indicated by a rotated curly bracket at the top of Figure 2,
many compounds include noble metals like Au, Ag, Pt, Pd, Rh,
Ir, Os, and Ru (119 out of 181). This might be due to the high
material costs and the weak tendency of these elements to
form stable oxides. Many combinations including Be are also
missing, partly due to the toxicity of Be.

In principle, the stability of A=B—O can only be definitely
judged when all of the possible stoichiometries (i.e., ratios
between elements) are examined. However, this is impractical
since the current CSP is conducted within a specific
compositional ratio. Therefore, we choose the representative
composition (A,B,0,) in two ways: by utilizing common
oxidation states or by using a machine-learned recommender
system” (see Figure 1b). First, we define the common

oxidation states of a cation by considering well-established
chemistry. If multiple oxidation states are possible, commonly
occurring for many elements in this study, we select the
oxidation state of the binary oxide with the lowest formation
energy (per atom) under normal conditions, as calculated by
the SCAN functional. The resulting oxidation states are
compiled in Table 1. We then form a 1:1 addition of binary
oxides for the representative composition. For example, in the
case of Au—Nb—O, we combine Au,0O; and Nb,O; from Table
1, resulting in the formula of AuNbO,. We find that the 1:1
combination is the most frequent ratio (50%) among ternary
oxides registered in ICSD, followed by 1:2 (18%) and 1:3
(11%). As for the second strategy, we use a machine-learned
recommender in ref 49, which is based on the Tucker method
that decomposes the ICSD data in tensor form into a core
tensor and low-rank matrices.’® We find that 76 out of the 181
systems possess the highest-rank compositions different from
those selected by the first method. Among them, we select 49
cases in which the composition proposed by the recommender
system suggests different oxidation states from the first method
(for instance, GaReQ, versus GaReOs) because they represent
opportunities for identifying compositions with stable
compounds. Lastly, we perform CSPs with SPINNER for a
total of 230 compositions in 181 systems.

Structure Prediction of Ternary Oxides. We use
SPINNER for CSP of the given composition. In addition to
stoichiometry, the formula unit (Z number) within the unit cell
must also be specified when conducting CSP. Here, we adopt a
Z number of 4, which is the most frequent among ternary
oxides in ICSD (34%). Using this Z number, structures with Z
=1 and 2 can also be found. (The structures with Z = 1, 2, and
4 cover 63%.) For each A—B—O system, we obtain the
structure with the lowest E,, as compiled in Table SI and
colored in Figure 2. To note, we confirm that the phase
separation is absent for every structure. A positive (negative)
E, i indicates that the structure is thermodynamically unstable
(stable) against phase separation (see Figure 1a). We posit that
a compound is synthesizable if E, is negative. Since we
consider only one or two compositions, there is a possibility of
false negatives (i.e, a compound is still synthesizable with
other compositions in the same system). We also note that our
definition of synthesizability does not take into account kinetic
aspects and synthetic pathways. Although accounting for these
factors would yield a more comprehensive analysis, it currently
remains an ongoing challenge in the field of materials
science.””* Tt is found that 45 systems contain 48 stable
compounds with negative E,, where 20 compounds in 19
systems are highly stable (Ey,; < —50 meV atom™). Most of
the newly discovered materials contain noble metals (35
systems), with Au being the most abundant (13 systems) (see
the blue bars at the top of Figure 2). In Table SI, the
compositions and Ey; values are compiled for the systems with
Epur < 30 meV atom ™. In 18 cases, the oxidation state from the
recommender system results in a lower Ej; than the common
one (see the underlined compositions). The lowest-energy
structures of some notable compounds are drawn in Figure 3.
To check the dynamic stability of the stable compounds, we
conduct density-functional perturbation theory calculations to
obtain the dynamical matrices. We find that none exhibited
significant imaginary frequencies (below 1 meV) at the I point
(which means that they are dynamically stable), with the sole
exception of Cs,RhO;. Cs,RhO;, however, displays an
imaginary frequency of 36 meV. We then perturb the structure
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Figure 2. Hull energy heatmap calculated for the selected elemental combinations. The elements are arranged in the order of increasing Mendeleev
number, following ref 51. The map is partitioned to illustrate similar synthesis tendencies. The gray tiles on the map represent ternary oxides whose
existence or nonexistence can be confirmed from the experimental databases. The colored tiles represent the hull energy values of the structures
explored in this study, displayed on a color bar scale below the map. Systems with stable compounds are indicated by a green border. Tiles with
black dots represent systems with stable compounds with structures that have no known prototypes. Tiles bordered by a dashed green box indicate
systems where only OQMD”*” registers a stable structure. The pale-blue bars above the heatmap indicate the number of target systems containing
each element, while the blue bars represent the number of discovered systems with stable compounds.

Table 1. Selected Common Oxidation State (n) of Each
Element (M)

M n M n M n M n
Li +1 Sc +3 Re +7 Zn +2
Na +1 Y +3 Ru +4 Cd +2
K +1 La +3 Rh +3 Hg +2
Rb +1 Ti +4 Pd +2 Al +3
Cs +1 Zr +4 Os +4 Ga +3
Be +2 Hf +4 Ir +4 In +3
Mg +2 Ta +5 Pt +4 Sn +4
Ca +2 Nb +5 Ag +1 Tl +3
Sr +2 Mo +4 Au +3 Pb +2
Ba +2 w +6

by molecular dynamics simulations at 300 K and find that the
relaxed structure is more stable than the original one by 13
meV atom™', without imaginary modes.

In Table S1, we provide the electronic properties of the
identified stable structures that are obtained by using AMP?.
The band-gap is evaluated by one-shot hybrid functional
calculation (HSE06),>” and static dielectric constants are also
calculated for materials with finite band gaps. The largest band

19381

gaps, 6.3 and 5.4 eV, are found for the most stable compounds,
Na,HfO; and Cs,HfOs, respectively (see Figure 3a,b). Their
dielectric constants are 11.3 and 13.5, respectively, which are
comparable to that of monoclinic HfO, (16.5).

In Figure 2, while 26 systems including Be are scanned, only
4 cases are found to be stable (Rb,BeQ,, Cs,BeO,, Re,BeOy,
and Au,BeO,). This is largely due to the high stability of BeO,
which makes it challenging to transform a binary beryllium
oxide into a ternary oxide. The small ionic radius of Be** (41
pm) also affects the stability of the ternary beryllium oxides,
necessitating higher lattice energy when other metal atoms are
introduced into the lattice sites between Be—O bonds. Also,
the disparity in ion radii between Be and other metals leads to
a lattice site mismatch, making it difficult to form stable ternary
crystal structures. This is confirmed by search results showing
that stable ternary beryllium oxides are discovered when
combined with elements with smaller ionic radii, such as AI**
(67.5 pm), but only metastable ternary beryllium oxides are
discovered when combined with elements with larger ionic
radii, such as Ga®* (76 pm), Y** (104 pm), La** (117.2 pm),
and Rh*" (80.5 pm). Even Re,BeOj (see Figure 3c), which we
newly found, can form a stable phase because the ionic radius
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Figure 3. Lowest-energy structures that are identified in this work are (a) Na,HfO5, (b) Cs,HfO;, (c) Re,BeQg, (d) Y,HgO,, (e) NbAuO,, and (f)

YAuO,.

of Re’* is small (52 pm). Among the stable ternary beryllium
oxides, Rb,BeO, and Cs,BeO, can form stable phases due to
inductive effects:*® electropositive alkali metals can induce the
oxidation of beryllium atoms by donating electron density to
neighboring oxygen atoms, thereby increasing the ionization
and lattice energies of ternary oxides.””

Comparison with Computational Databases. Compu-
tational databases such as OQMD, AFLOW, and MP provide
millions of theoretical structures, most of which are obtained
through ion substitution into known compounds or proto-
types." ' In specific, the theoretical structures in the MP are
primarily generated by data-mined ion substitution method,*®
and structures in the OQMD and AFLOW databases are
largely predicted by a high-throughput structure generation
method using specific types of prototypes.'”” Such a data-
mining approach is highly efficient, but it risks overlooking
materials with unknown prototypes. In contrast, the present
direct approach is computationally more demanding but allows
exploration of the structure space without any constraints.
Thus, it would be worthwhile to compare these two
contrasting methodologies. To this end, we have retrieved all
of the theoretical structures belonging to the target A—B—O
systems under study from the three databases, regardless of
their stoichiometry. We then assessed their hull energies using
the same reference structures (experimentally known unary
and binary phases) and the method employed for calculating
the hull energies of SPINNER structures. Out of 181 target
combinations, 173, 86, and 181 systems include compositions
that have at least one entry in the AFLOW, MP, and OQMD
databases, respectively, leading to the retrieval of 368, 206, and
1674 structures from each database.

Figure 4a displays the number of systems found to be stable
with a negative E; ;. Only one stable structure emerges from
AFLOW as the energy distribution is primarily in the high-
energy region (see Figure 4b). Structures from AFLOW are
prevailed by the perovskite structure. The stability of the
perovskite structure is typically evaluated based on Gold-
schmidt’s tolerance factor and the octahedral factor.*”®" Our

analysis reveals that SS systems (out of a total of 181)
concurrently meet these two conditions in ABO; stoichiom-
etry. However, no perovskite structures from the AFLOW are
identified to be stable, suggesting that other properties, such as
electronegativity, also play a significant role.”>”** On the other
hand, MP yields 11 systems with stable compounds. As
illustrated in Figure 4b, the distribution near Ey = 0 is higher
for MP compared to other databases, which can be attributed
to the use of a machine-learned crystal structure prediction
scheme™ and direct search.”® Lastly, OQMD provides 29
systems with stable compounds, the highest count among the
considered databases. This might be because OQMD
generates structures from a substantially larger pool of
prototypes than the other databases, as suggested by the
highest number of retrieved structures (see above).

In Figure 4c, Epy's from AFLOW, MP, OQMD, and the
present study are compared for the same system (numerical
data are compiled in Table S1). Notably, several systems exist
where OQMD predicts more stable phases than SPINNER
such as below y = «x in the third quadrant or the fourth
quadrant (see the dashed line). We find that the oxidation
states are different in most of these cases. For instance, in Pd—
Mg—O, the present study identifies PdAMgO; (=71.9 meV
atom™') and PdMgO, (106.8 meV atom™"') with Pd oxidation
states of +4 and +2, respectively, while OQMD lists Pd;MgOy
(—102.1 meV atom™), implying mixed Pd oxidation states of
two +4 and one +2. When the present scheme is applied to
Pd;MgOy, we find the structure identical to that in OQMD
(see Table S2). Such untried stoichiometries were also
suggested in the recommender system, but their priorities are
distributed widely (from the 2nd to 19th ranks). This implies
the need to scan a wide range of compositional ratios to
identify correct equilibrium phases, particularly when the
cation has multivalence states. It also indicates that the
recommender system could be improved by utilizing
theoretical structures, particularly for unexplored chemical
spaces as in the present study.
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Figure 4. Comparison of the search results with hypothetical
structures in theoretical materials databases. (a) Number of systems
with stable compounds identified in AFLOW, MP, OQMD, and the
present study. (b) Distribution of hull energy (Ey,) for the most
stable phases in each database, presented as normalized violin plots.
The horizontal line at Eyy; = O represents the stability criterion. (c)
Comparison of hull energy between databases and the present study
for the same system. Blue circles, yellow squares, and green triangles
represent the hull energy of AFLOW, MP, and OQMD structures,
respectively. Systems enclosed by a green dashed line indicate cases
where OQMD predicts more stable phases than SPINNER. Symbols
with a red outline indicate comparisons of the identical composition.
The hull energies of structures from the AFLOW, MP, and OQMD
are recalculated using the same reference structures (experimentally
known unary and binary phases) and the method employed for
calculating the hull energies of SPINNER structures.

When the composition is identical, SPINNER generally
identifies a structure with lower energy compared to those in
the databases, as indicated by the symbols with the red outline
in Figure 4c. Specifically, among 35 cases in Table S1 with the
same stoichiometry between OQMD and this work, our study
yields lower energies for 22 systems, higher energies for 6
systems, and the same structure is found in 7 systems. On
average, the energy is lower by 38.8 meV atom™' compared to
those in OQMD. This suggests that the direct search typically
outperforms the data-mining approach in the energy scale. Of
the six cases where OQMD reports lower energies, three
systems—RhIrO,, RuOsO,, and OsAlO,—are speculated to
form solid solutions in the rutile type, inferred from subtle
energy variations of 1.2—16.4 meV atom ' among the
candidate structures (Figure S4), which is smaller than the
configurational entropy term at 300 K (18 meV). In these
systems, OQMD and SPINNER show a slight difference only

in the cation ordering. In the case of RbRhO,, the NNP
incorrectly predicts the energy of the structure in OQMD with
a large error of 350 meV atom™, as its structural motif (Rb—O
triangular prismatic polyhedron) is not present in the training
set.

We use the AFLOW prototype library®® to classify the
prototypes of stable structures shown in Figure 2, and we find
that 24 compounds out of the 48 stable compounds do not
match any known prototypes (see dotted tiles). Interestingly,
we find that AuYO;, AulnO;, and AuTIlO; are in the same
prototype, as do AuNbO, and AuTaO,, which are not reported
in the AFLOW library (see Figure SS). This means that the
majority of the newly identified stable phases cannot be
obtained through the data-mining approach.'”*®*’ For
example, in the composition of Y,HgO, (see Figure 3d), the
lowest-energy structure in the OQMD has an Ey of —18.7
meV atom™. In contrast, SPINNER identifies a lower-energy
structure with an E;; of —26.0 meV atom™, which does not
belong to any known prototype. These findings suggest that
the direct search for equilibrium phases is essential for creating
comprehensive materials databases for unexplored chemical
spaces.

B DISCUSSION

The previous section contrasts two approaches, direct versus
data-mining'”***” in predicting crystal structures. The direct
search outperforms the data-mining approach for a specific
composition, indicating that the current library of prototypes is
still insufficient. However, due to the high computational cost
of structure search, the direct method, such as SPINNER, is
not suitable for scanning diverse compositions, which is critical
for multivalence cations. This is not an obstacle in the data-
mining approach in which simple ion exchange and structural
relaxation can be done instantly. Thus, as seen above, the
OQMD database could predict stable phases for some systems
where SPINNER only produced unstable structures, by trying
different oxidation states. This observation indicates a
synergistic effect between direct and data-mining searches,
suggesting that a complementary method would be desirable in
materials discovery, striking a balance between exploration and
exploitation. For instance, one can consider the crystal
structure prediction method that primarily predicts using
data-mining methods and strategically explores particular
compositions with high levels of uncertainty to fine-tune the
data-mining model on the fly. In addition, the data-mining
method can assist in sampling training structures with diverse
structural motifs that are not explicitly included in the training
set generated by melt-quench simulations, which will increase
the generalizability of the machine-learned potentials.

In the preceding section, we noticed a substantial difference
among the databases. This is somewhat puzzling as all three
databases are based on the data-mining approach. As the
systems in the current study are less experimentally explored
than other popular oxides, the selection of relevant prototypes
might have varied among databases. As the specific algorithm
for selecting prototypes is not openly available at this time, it is
beyond the present work to clearly explain this discrepancy.

In this study, we limited the Z number to 4. When the
resulting Ey is slightly positive, one might consider trying
higher Z numbers to identify stable phases. This can be done
efficiently because the NNP is readily available, and the
computational cost scales linearly with the number of atoms.®”
For instance, for Rb,MgO, (0.1 meV atom™) and Sc,HgO,
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(2.9 meV atom™), we performed CSP with Z = 8 and found a
more stable structure for Sc,HgO, (—5.9 meV atom™"), while
the structure for Rb,MgO, remained the same. Likewise, one
could try combinations other than 1:1 without changing the
oxidation state where the trained NNP remains usable due to
the transfer learning.”” For example, for Rb,MgO, (0.1 meV
atom™'), we perform CSP with the composition of RbyMgO,
and found a stable structure with an E, ; of —6.3 meV atom™".

So far, the hull energies are evaluated by using reference
structures that consists of experimentally reported binary and
unary phases because the main objective of this study is to
discover the chemical systems with synthesizable compounds
that do not decompose into experimentally known phases.
However, if one wants to identify truly synthesizable materials
from the extensive pool of hypothetical structures, it is
necessary to obtain the hull energies by including all
theoretical structures from available databases. Indeed,
among 48 stable compounds, we find that the hull energies
of 8 materials (Na,HfO,, Cs,HfO;, Cs,PdO,, Cs,PtO,,
Rb,BeO,, CsRhO,, Au,PbO,, and PdMgO;) change when
including hypothetical structures from OQMD, AFLOW, and
MP in the reference database, while the sign of hull energies
remains negative. On the other hand, the hull energies of
Rb,PtO;, PdHgO; LaAgO,, RhIrO,, RuOsO,, OsAlO,,
Cs,BeO,, AgAuO,, and RbRhO, increase to positive values,
23.3, 22.5, 30.2, 6.0, 3.3, 2.5, 1.5, 0.3, and 128.4 meV atom™,
respectively, when evaluated by including theoretical struc-
tures. In Table S1, we also present Ey,; values evaluated by
including hypothetical structures.

In principle, our scheme is suitable for all types of materials,
not limited to oxides, as it does not require prior knowledge of
the target system. In our previous work,”” we demonstrated the
effectiveness of the present computational framework in
identifying ground-state structures across diverse classes of
materials such as sulfides, nitrides, and ternary metals.
However, from a practical aspect, certain material groups
such as halides and sulfides tend to exhibit a larger number of
metastable structures during the evolutionary algorithm due to
the rugged potential energy surface. In contrast, oxides
generally have a smaller number of structures due to the
limited types of polymorphs and structural orders resulting
from their high bonding strength. Consequently, the computa-
tional cost for predicting crystal structures for materials such as
halides and sulfides is typically higher than that for oxides. This
is a practical issue, so we anticipate that further optimization of
the computational parameters in our process will address this.

Regarding the computational cost, it takes about 60 h with a
32-core node to predict the structure for one composition on
average, which includes the time for generating DFT training
sets. This is 60% shorter than our previous work’’ owing to
further optimization of the procedure for generating training
sets, the most time-consuming step of the entire CSP process.
Thus, on a medium-sized parallel computer, the complete scan
of 181 systems took a couple of months. This represents a
relatively modest requirement for computational resources,
indicating that a heuristic-based direct search can be performed
on a large scale, as demonstrated in the current work. We
believe that this is a promising avenue for expanding the
computational materials database in the future.

Bl CONCLUSIONS

In summary, we examined hitherto unexplored ternary metal
oxide systems using machine-learned potentials and the

19384

evolutionary structure searching algorithm. We identified 45
ternary oxide systems containing stable compounds that are
resistant to decomposition into known experimental phases.
Comparing our results with theoretical databases that mainly
rely on data-mining methodologies for generating hypothetical
structures, we discussed the strengths and weaknesses of both
approaches and discussed the complementary methods to
overcome such limitations. Considering the relatively moderate
computational costs required for this work, our demonstration
of heuristic-based direct structure searches offers a feasible and
encouraging avenue in materials discovery.
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Data Availability Statement

The main part of SPINNER is opened at https://github.com/
MDIL-SNU/SPINNER.”” This program carries evolutionary
structure searches using the trained NNP. SIMPLE-NN>® for
training NNPs is available at https://github.com/MDIL-SNU/
SIMPLE-NN_v2. All of the lowest-energy structures found by
SPINNER are uploaded to SNUMAT®® along with basic DFT
results. SNUMAT supports RESTful API for search and
download.
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