Supporting Information for

Reduction of carrier density and enhancement of the bulk Rashba spin-orbit coupling strength in Bi₂Te₃/GeTe superlattices

Seong Won Cho^{1,2,†}, Young Woong Lee^{1,3}, Sang Heon Kim^{1,4}, Seungwu Han², Inho Kim¹, Jong-Keuk Park¹, Joon Young Kwak¹, Jaewook Kim¹, YeonJoo Jeong¹, Gyu Weon Hwang¹, Kyeong Seok Lee¹, Seongsik Park¹, and Suyoun Lee^{1,5,*}

¹Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul 02792, Korea

²Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea

³Department of Physics, Konkuk University, Seoul 05029, Korea

⁴Department of Materials and Science Engineering, Korea University, Seoul 02841, Korea

⁵Division of Nano & Information Technology, Korea University of Science and Technology, Daejeon 34316, Korea

* e-mail: slee_eels@ kist.re.kr

Fig. S1. The cross-section STEM images of the symmetric $([1|3]_{25}, [2|6]_{13}, [3|9]_8, [4|12]_6$, and $[6|18]_4$) and the asymmetric $([2|18]_6)$ [BT|GT] SLs., where $[x|y]_z$ notation represents an SL composed of *x* (u.c.) of the layer BT and *y* (u.c.) of the GT layer with *z* representing the repetitions of the layers. Fast Fourier transformation of the images is shown as an inset together with each STEM image.

Fig. S2. The *c*-lattice constant of GT (0003) (a) and BT (0003) (b), which are calculated from the XRD peaks in Fig. 1c of the main text.

Fig. S3. (a)-(e) XRD reciprocal lattice map around Si (224) of the symmetric [BT|GT] SLs. (f) The changes of Q_x of asymmetric (0,1,-1,n) reflections according to increasing period.

Fig. S4. AFM topography of the GeTe 2 nm template layer on Si (111) substrate (a), $[2|6]_6$ (b), $[4|12]_3$ (c), and $[6|18]_2$ (d) [BT|GT] SLs.

Fig. S5. The sheet resistance (R_{sh}) as a function of the temperature (T) of [BT|GT] SLs.

Fig. S6. The temperature-dependent carrier density (n) of [BT|GT] SLs. The sign of n means the carrier types; the positive (the negative) means hole (electron). n was calculated by the Hall measurement with the external magnetic field of 4 T.

Fig. S7. The Hall resistance (R_{xy}) as a function of the magnetic field (*H*) of [BT|GT] SLs at T=1.8 K.

Fig. S8. The magneto-resistance (*MR*) of $[t_{BT}|t_{GT}]$ SLs ($t_{GT}=1, 2, 3, 4, \text{ and } 6$) as $t_{BT} = 1$ (a), 2 (b), 3 (c), 4 (d), and 6 (e) at T=1.8 K. The *MR*_{ord} is proportional to the square of mobility (μ) and magnetic field (*H*) (*MR*_{ord} ~ (μ *H*)²) because it is related to the scattering induced by the electron cyclone motion in a vertical magnetic field. Therefore, *MR*_{ord} can be expressed as $MR(H) = k(H/\rho_0)^2$ through Kohler's rule, and the constant *k* is a temperature invariant constant assuming that the carrier density is independent of temperature [1]. *k* has been extracted from *MR*(*H*) of relatively high temperature (100 K) at which *MR*_{ord} dominates *MR*(*H*), and *MR*_{ord} at 1.8 K has been reproduced with this *k* (Graphical representation of this process is shown in Fig. S10).

Fig. S9. Temperature dependence of the MR vs. H curve of an SL ([BT₁|GT₃]₂₅) as a representative sample

Fig. S10. Process of extraction of MR_{WAL} . (a) MR vs. H / ρ_0 curve at 100 K (black open circles), which can be fully expressed by the classical MR (MR_{ord}) with the form of $k(H / \rho_0)^2$ (red line). With k extracted from (a), the MR_{ord} at 1.8 K can be reproduced (blue line in (b)). And, the MR_{WAL} (red line in (b)) can be obtained by subtracting the MR_{ord} from raw MR (black open circles in (b)).

Fig. S11. The fitting parameters of B_{ϕ} (a) and B_{so} (b) as a function of carrier mobility.

Reference

[1] Y. Nakazawa, M. Uchida, S. Nishihaya, M. Ohno, S. Sato, and M. Kawasaki, Physical Review B **103** (2021).