ABSTRACT: Oxygen vacancies and adsorbed oxygen species on metal oxide surfaces play important roles in various fields. However, existing methods for manipulating surface oxygen require severe settings and are ineffective for repetitive manipulation. We present a method to manipulate the amount of surface oxygen by modifying the oxygen adsorption energy by electrically controlling the electron concentration of the metal oxide. The surface oxygen control ability of the method is verified using first-principles calculations based on density functional theory (DFT), X-ray photoelectron spectroscopy (XPS), and electrical resistance analysis. The presented method is implemented by fabricating oxide thin film transistors with embedded microheaters. The method can reconfigure the oxygen vacancies on the In$_2$O$_3$, SnO$_2$, and IGZO surfaces so that specific chemisorption dominates. The method can selectively increase oxidizing (e.g., NO and NO) and reducing gas (e.g., H$_2$S, NH$_3$, and CO) reactions by electrically controlling the metal oxide surface to be oxygen vacancy-rich or adsorbed oxygen species-rich. The proposed method is applicable to gas sensors and overcomes their existing limitations. The method makes the sensor insensitive to one gas (e.g., H$_2$S) in mixed-gas environments (e.g., NO$_2$+H$_2$S) and provides a linear response ($R^2 = 0.998$) to the target gas (e.g., NO$_2$) concentration within 3 s. We believe that the proposed method is applicable to applications utilizing metal oxide surfaces.

KEYWORDS: oxygen vacancies, adsorbed oxygen species, gas sensors, metal oxides, gas mixtures identification, chemisorption, density functional theory

INTRODUCTION

Metal oxides (MOXs) have received considerable attention for a variety of applications such as electronics, catalysis, energy conversion, and gas sensing.1–6 In these applications, oxygen vacancies (OVs) and adsorbed oxygen species (AOSs, e.g., O$_2^{−}_{\text{ads}}$ and O$^{−}_{\text{ads}}$) on the surface of MOX have played important roles.1–10 Particularly, since the discoveries that surface OVs serve as gas adsorption sites and that AOSs promote gas reactions,10–11 surface AOS and OV control become vital in gas sensing applications.10,12,13 The surface oxygen content (amount of OV and AOS) of MOXs has been modified utilizing techniques such as high-energy particle bombardment,14 high-temperature sintering,15 ion doping,16 and heterostructures.17 However, most existing modulation techniques necessitate harsh conditions such as high temperature and high vacuum, and once the oxygen content has been controlled, it is very difficult to readjust them.10,12,14–19

In this study, we present an electrical approach for manipulating the surface OVs and AOSs of MOXs. The oxygen adsorption energy is controlled by modulating the carrier concentration of the MOX using an electric field, and the surface oxygen content can be repeatedly tuned. To implement the proposed method, we fabricated oxide thin film transistors with embedded microheaters (Figures 1(a), S1, and S2). We demonstrate that the quantity of OV and AOS on the surface of MOX could be adjusted using X-ray photoelectron spectroscopy (XPS), first-principles calculations based on density functional theory (DFT), electrical resistance analysis, and...
charge-transfer-based gas sensor operation. We show the performance of the proposed method using In$_2$O$_3$ as a representative, known for its high controllability of oxygen vacancies, and demonstrate the applicability of the method using SnO$_2$ and indium gallium zinc oxide (IGZO). In addition, we show that the proposed method can manipulate MOX surfaces to the desired states independent of long-term gas interactions.

OVs and AOSs significantly influence redox reactions on MOX surfaces. By making the MOX surface an O-deficient (OV-rich) or an O-rich (AOS-rich), we present a technique for manipulating chemisorption properties such as charge transfer and adsorption energy. We show the efficacy of the suggested technique using NO$_2$ and H$_2$S gases, typical oxidizing and reducing gases for MOX. We demonstrate the effect of the proposed method by sensing the surface-gas reaction by using the fabricated devices. In other words, we regard the fabricated devices as conductometric gas sensors and obtain surface reaction information using the sensor signals. Note that gas sensors are used in a wide range of applications and have received a lot of attention. Due to the unique construction of the devices, which utilizes a microheater as a gate, the suggested technique yields exceptional gas sensing performance.

Intriguingly, the proposed method shows the possibility of solving chronic problems of MOX-based gas sensors (non-linearity, gas cross-sensitivity, slow gas identification time, and long-term reliability). We show that making MOX surfaces either O-deficient or O-rich can selectively enhance the reactivity of gas molecules using OV as active sites or those using AOS as active sites, respectively. By precisely adjusting the MOX surface, MOX-based gas sensors can achieve a linear response and near real-time gas identification even in a mixed gas (NO$_2$ + H$_2$S + air) environment.

RESULTS AND DISCUSSION

Surface Oxygen Manipulation. Due to the ubiquitous availability of oxygen in the actual environment, oxygen molecules actively interact with MOX surfaces. We present a reconfigurable method for controlling the quantity of surface oxygen in MOX. When the electron concentration of MOX increases or decreases by an electric field at a high temperature (e.g., 240 °C), either more oxygen or less oxygen can be adsorbed on the modified surface relative to the pristine condition (Figure 1(a)). The electric field is controlled by biasing the heater as a gate. When a positive or negative voltage is applied to the gate, the carrier concentration of MOX increases or decreases; the surface oxygen concentration increases or decreases, respectively.

Point XPS is performed after applying the proposed oxygen adsorption/desorption method to the In$_2$O$_3$ device. Due to the limited resolution of point XPS analysis, the surface information on the SiO$_2$ dielectric layer and the In$_2$O$_3$ device is obtained simultaneously (Figure 1(b)). As a reference, the O$_{1s}$ XPS peak of the SiO$_2$ dielectric layer is obtained (bottom of Figure 1(b)). The O$_{1s}$ XPS peaks obtained from the device are then divided into peaks originating from the SiO$_2$ and In$_2$O$_3$ films.

![Figure 1. Reconfigurable surface oxygen manipulation method for MOX. (a) Schematic images of the band diagram, electron concentration, and enlarged surface of the In$_2$O$_3$ device when a positive or negative voltage is applied to V_{GS}. (b) High-resolution O$_{1s}$ core level XPS spectra of the In$_2$O$_3$ device and the SiO$_2$ dielectric layer. The four spectra from top to bottom are the O 1s XPS spectra of the initial In$_2$O$_3$ device, the In$_2$O$_3$ device after the oxygen adsorption method, the In$_2$O$_3$ device after the oxygen desorption method, and the SiO$_2$ layer, respectively. (c) High-resolution In$_{3d}$ core level XPS spectra of the In$_2$O$_3$ device. The three spectra from top to bottom are the In 3d XPS spectra of the initial In$_2$O$_3$ device, the In$_2$O$_3$ device after the oxygen adsorption method, and the In$_2$O$_3$ device after the oxygen desorption method, respectively. Electrical resistance changes in the In$_2$O$_3$ device with the (d) oxygen adsorption and (e) desorption methods at 240 °C. (f) Binding energy (ΔE) of oxygen to normal, electron-depleted, and electron-accumulated In$_2$O$_3$ calculated by DFT.](https://doi.org/10.1021/acsnano.3c03034)
Figure 2. Effect of surface oxygen manipulation on the chemisorption in In$_2$O$_3$. (a) Schematic for surface oxygen manipulation of MOX to enhance the oxidizing gas reaction. (b) Response characteristics of the In$_2$O$_3$ gas sensor to 500 ppb NO$_2$ gas with and without oxygen manipulation method at 160 °C. From the left, these are the NO$_2$ gas response cyclic curves of the sensor without oxygen manipulation, with oxygen desorption, and with oxygen adsorption. (c) Steady-state responses (S_{NO_2}) of In$_2$O$_3$ sensors to 500 ppb NO$_2$ gas at different levels of surface oxygen manipulation. (d) S_{NO_2} versus NO$_2$ gas concentration with and without oxygen desorption. (e) Schematic for surface oxygen manipulation of MOX to enhance the reducing gas reaction. (f) Response characteristics of the In$_2$O$_3$ gas sensor to 50 ppm of H$_2$S gas with and without oxygen manipulation at 240 °C. From the left, these are the H$_2$S gas response cyclic curves of the sensor without oxygen manipulation, with oxygen desorption, and with oxygen adsorption. (g) Steady-state responses (S_{H_2S}) of In$_2$O$_3$ sensors to 50 ppm of H$_2$S gas at different levels of surface oxygen manipulation. (h) S_{H_2S} versus H$_2$S gas concentration with and without oxygen adsorption. S_{NO_2} and S_{H_2S} are measured five times, and the mean and one standard deviation are plotted using error bars.

XPS peaks of the In$_2$O$_3$ devices are analyzed considering the full width at half-maximum (fwhm, 1.85 eV) and the position (∼532.3 eV) of the SiO$_2$ O$_1s$ XPS peak. The O$_1s$ XPS spectra originating from the In$_2$O$_3$ devices are deconvoluted into two bands at 529.7 and 531.6 eV. The low binding energy peak is attributed to the lattice oxygen of In$_2$O$_3$ (In–O). The high binding energy peak is related to oxygen vacancies and surface hydroxyl groups. Many studies have claimed that oxygens near oxygen vacancies cause a peak around 531.6 eV. Conversely, lower binding energy peaks at 444 (∼532.3 eV) of the SiO$_2$ O$_1s$ XPS peak are related to hydroxyl groups.

First-principles calculations based on DFT are performed to verify the surface oxygen control method. By variation of the In$_2$O$_3$ electron concentration, the binding energy (ΔE) of oxygen is calculated. As expected, when the electron concentration increases, ΔE decreases, and oxygen adsorption
is promoted. When the electron concentration decreases, ΔE becomes positive, and oxygen desorption occurs. Controlling the concentration of surface electrons affects the oxygen adsorption energy, which determines the surface oxygen concentration.

Effect on Chemisorption. In many redox reactions related to MOXs, OVs are representative active sites traditionally used, and AOSs are the active species based on the generally accepted Mars–van Krevelen (MvK) mechanism. Facilitating oxygen adsorption with the proposed method reduces surface OVs and increases AOSs, whereas promoting oxygen desorption produces the opposite effect. We find that the oxidizing gases use OVs as the active sites. In contrast, reducing gases utilize AOSs as active species. Using the proposed method, the MOX can be controlled to react primarily with specific types of gases (reducing or oxidizing gas). We verified the gas selectivity using the gas sensing signals of the fabricated devices.

As the OVs increase due to the desorption of surface oxygen, the adsorption of oxidizing gases (e.g., NO$_2$) and the signal of the fabricated sensor increase (Figure 2(a)). After the oxygen desorption step, the In$_2$O$_3$ sensors show 39.4-times larger responses (S_{NO_2}) to 500 ppb of NO$_2$ gas than without the step (Figure 2(b) and (c)). In contrast, after the oxygen adsorption step, S_{NO_2} decreases by 0.154-times relative to the value without the step. Increasing the amount of oxygen adsorption and desorption increases the efficacy of oxygen control (Figure 2(c)). The oxygen desorption method allows more NO$_2$ gas to be adsorbed and increases the charge transfer, significantly reducing the detection limit of the sensor (Figure 2(d)). Without oxygen desorption, the sensor detects up to 10 ppb of NO$_2$ gas; with oxygen desorption, the sensor responds to even small amounts of gas, allowing the same sensor to detect up to 2 ppb of NO$_2$ gas (5-times lower).

In contrast to the oxidizing gas, the quantity of reducing gas (e.g., H$_2$S gas) reaction and the magnitude of the sensor signal rise as the amount of AOS increases (Figure 2(e)). The oxygen adsorption step enhances the H$_2$S gas response ($S_{\text{H}_2\text{S}}$) by 9.66-times relative to the value before performing the step (Figure 2(f) and (g)). In addition, oxygen adsorption reduces the H$_2$S detection limit from 1 to 0.2 ppm. Conversely, if oxygen desorption occurs, OVs increase, AOSs decrease, and $S_{\text{H}_2\text{S}}$ decreases to ~1.35, making the In$_2$O$_3$ surface insensitive to H$_2$S gas. Controlling the amount of surface oxygen has opposite impacts on the NO$_2$ and H$_2$S gas reactions. The surface oxygen control allows In$_2$O$_3$ to be reconfigured to have selectivity for certain types of gases. When the oxygen desorption method is used, S_{NO_2} increases, while $S_{\text{H}_2\text{S}}$ decreases, increasing S_{NO_2}/$S_{\text{H}_2\text{S}}$ from 38 to 3457. In contrast, when oxygen adsorption is used, S_{NO_2}/$S_{\text{H}_2\text{S}}$ decreases to 0.6 (Figure 3(a)).

The temperature and time of the oxygen manipulation method affect the surface oxygen contents, S_{NO_2} and $S_{\text{H}_2\text{S}}$. As the oxygen manipulation temperature increases from 120 to 360 °C, the manipulation effect increases, and both S_{NO_2} and $S_{\text{H}_2\text{S}}$ increase (Figure S3). Similarly, S_{NO_2} and $S_{\text{H}_2\text{S}}$ increase with increasing manipulation time (Figure S4). Due to the fact that S_{NO_2} and $S_{\text{H}_2\text{S}}$ increase substantially even after a brief period of
manipulation time, it is recommended to apply an appropriate manipulation time for sensor application considering the power consumption.

To explain the experimental data, we calculate the ΔE and charge transfer values (ΔQ) of NO$_2$ and H$_2$S gases to pristine, oxygen-rich, and oxygen-deficient In$_2$O$_3$ surfaces by using DFT. Figure S5 depicts various In$_2$O$_3$ surfaces utilized in the DFT computations. On the O-deficient In$_2$O$_3$ surface, relative to the pristine surface, the ΔE of NO$_2$ increases in the negative direction, while the ΔE of H$_2$S increases in the positive direction (Figure 3(b) and (c)). In contrast, when the pristine surface becomes O-rich, the ΔE of both NO$_2$ and H$_2$S gases increases in the negative direction. In addition, when oxygen gas is desorbed because of gas adsorption, ΔE increases in a more negative direction (open circles in Figure 3(b) and (c)). In the case of NO$_2$, $|\Delta E|$ is the largest when the O of NO$_2$ is combined with In at the OV site. Conversely, H$_2$S gas molecules have the largest $|\Delta E|$ when combined with the AOS of In$_2$O$_3$.

The change in electron charge density during NO$_2$/H$_2$S gas adsorption is calculated to quantize the charge transfer between NO$_2$/H$_2$S gas and In$_2$O$_3$ (Figures 3(b)–(e) and S6, and Tables S3 and S4). The ΔQs of the In$_2$O$_3$ surface are 0.034e for the pristine surface and 0.614e (18-times larger) for the O-deficient surface (Figure 3(d)). This result explains why the NO$_2$ gas-sensing properties (detection limit and S_{NO_2}) improve after oxygen desorption. When NO$_2$ gas is adsorbed on an O-rich surface, the sign of ΔQ for the surface differs depending on whether oxygen is additionally desorbed. When oxygen is additionally desorbed from the surface, the ΔQ is 0.157e; when oxygen is not desorbed, the ΔQ is -0.110e. The ΔQ due to H$_2$S gas adsorption on the O-deficient surface is -0.054e, which is 3.2-times less than that on the pristine surface. In contrast, on the O-rich surface, ΔQ is significantly more negative than that on the pristine surface, regardless of whether oxygen is desorbed (Figure 3(c)). On the O-deficient surface, H$_2$S gas is less adsorbed and has less impact on the sensor signal; on the O-rich surface, more H$_2$S gas is adsorbed and exhibits a more significant effect on the sensor signal.

The applicability of the proposed method to other MOXs (SnO$_2$ and IGZO) is evaluated (Figure 3(f)–(i)). Using the proposed method, the surface oxygen content of SnO$_2$ and IGZO is manipulated (Figure 3f). The effect of surface oxygen manipulation on the chemisorption of oxidizing (NO, NO$_2$) and reducing (H$_2$S, NH$_3$, and CO) gases is tested (Figure 3(g)–(i)). In all three MOXs, the reaction of oxidizing gases increases as the quantity of OV grows, while the reaction of reducing gases increases as the amount of AOS increases.

The amount of OV and AOS on the surface of the MOX may change over time or with gaseous reactions. Our manipulation approach effectively returns the MOX surface to...
its desired condition by utilizing ubiquitous oxygen. This uniformity of the MOX enables a consistent amount of chemisorption regardless of previous gas reactions. Preceding the manipulation method to the gas reaction allowed almost identical amounts of chemisorption and gas response over a long period (Figure S7). Note that the proposed method exhibits much less variation in sensor response over time compared with the most popular existing preheating method presented in commercial sensor manuals (Figure S7).

Application to Gas Sensors. Gas sensors convert the surface gas reaction into an electrical signal. Most of the existing MOX-based gas sensors utilize a steady-state response (Figure 4(a)). This response is trustworthy, since the same response is produced independently of the gas reaction history; however, obtaining the response requires significant time and energy. Therefore, attempts have been made to utilize transient responses to identify gases rapidly. However, identifying gases using transient responses is difficult because the transient response is highly dependent on the gas exposure history (Figure 4(b)). In addition, the steady-state response of MOX is nonlinear due to its intrinsic properties, as evidenced by the Langmuir and Brunauer–Emmett–Teller (BET) models (Figure 4(c)).

We present a method for obtaining fast and stable transient responses by manipulating the In$_2$O$_3$ surface. Repeatable transient responses to NO$_2$ gas are obtained by preceding the gas desorption step over the gas-sensing step (Figure 4(d)). During the gas desorption step, the electron concentration of In$_2$O$_3$ decreases, the ΔE values of NO$_2$ and O$_2$ gases increase in a positive direction (Figures 1e and S8), and the quantities of adsorbed gases decrease. Due to the gas desorption step, the sensor detects the NO$_2$ gas with a uniform MOX surface and generates a nearly identical transient response regardless of the gas exposure history. Unlike the conventional method, our method does not recover the sensor by artificially exposing it to a clean atmosphere (dry air or N$_2$). Our method is tested in an environment similar to the real environment where NO$_2$ gas is present in the atmosphere. Surprisingly, ten transient responses with different gas response histories exhibit almost identical current changes (ΔI) (Figure 4(e)). We utilize ΔI and slope (ΔI/Δt) because the initial current value can vary depending on the external environment (Figure S9). ΔI and ΔI/Δt show linear relationships with the NO$_2$ gas concentration ($R^2 = 0.998$, Figures 4(f) and S10).

After the gas desorption step, MOX has a small surface coverage and desorption is negligible compared to adsorption. Therefore, the adsorption rate can be expressed as follows:

$$\frac{dN_{\text{gas}}}{dt} = \alpha P_{\text{gas}} N^*$$ \hspace{1cm} (1)

where α, N_{gas}, and N^* are the adsorption constant, the number of adsorbates, and adsorption centers per unit surface area, respectively. As long as desorption is negligible, the amount of adsorbed gas is proportional to the gas concentration (partial pressure). Due to the low surface coverage, the adsorption of the gas of O$_2$ and NO$_2$ can be regarded as a superposition of the adsorption of each gas. The ΔI/Δt is linear with the NO$_2$ gas concentration (Figure 4(f)). The proposed surface manipulation method enables rapid gas detection and minimizes the amount of energy consumption required for gas sensing.

Identifying precise gas concentrations in mixed-gas (oxidizing and reducing gases) environments has been considered a challenging task, because distinct gas concentration combinations produce the same sensor response (Figure 5(a)). In this study, we demonstrate that by preceding with oxygen desorption, the sensor response can be made insensitive to H$_2$S gas while remaining sensitive to NO$_2$ gas. As shown in Figures 5(b) and S11, although the initial current value varies slightly with the H$_2$S concentration, ΔI/Δt hardly changes. Note that the ΔE of NO$_2$ gas on the O-deficient (OV-rich) surface is substantially more negative than that of H$_2$S; the ΔQ of NO$_2$ is much larger than that of H$_2$S (Figure 3(b) and (c)). By increasing the OVs and decreasing AOSs, the NO$_2$ gas reaction using OVs as active sites is promoted and the H$_2$S gas reaction using AOSs is suppressed. Figure 5(c) and (d) depict the ΔI/Δt values for various combinations of NO$_2$ and H$_2$S gas concentrations. Notably, ΔI/Δt shows a linear relationship with the NO$_2$ gas concentration; this parameter is unaffected by the H$_2$S gas concentration. Therefore, even in an environment containing both NO$_2$ and H$_2$S, the sensor accurately identifies the NO$_2$ gas concentration.

CONCLUSIONS

This work introduces a method for reconfigurable manipulation of MOX surfaces by electrically altering the electron concentration of MOX. Controlling the electron concentration manipulates the amounts of OV and AOS on the MOX surface by regulating the oxygen adsorption energy. The proposed method is implemented by fabricating devices embedding microheaters that can operate as a gate. The chemisorption of specific target gases can be increased by manipulating the surface using OVs and AOSs. Our method is applied to the gas sensors. It overcomes the limitations of existing gas sensors, such as nonlinearity, gas cross-sensitivity, slow gas identification time, and long-term reliability, with great performance. Since the proposed method can be applied as long as it can simultaneously provide heat and electric field to the MOX, it is expected that the same results can be obtained with various alternative methods. We believe that our method can be widely applied in fields utilizing MOX surfaces.
METHODS

Device Fabrication. The devices were fabricated by using standard complementary metal-oxide-semiconductor (CMOS) fabrication processes. Figure S1 depicts schematics of the fabrication procedure. A 550 nm silicon oxide was grown by wet oxidation on 6 in. (100)-oriented p-type silicon wafers. A 350 nm thick in situ n-type polycrystalline silicon was deposited by using a low-pressure chemical vapor deposition process and then patterned to form the microheater (gate). To avoid contamination, a passivation layer of SiO$_2$ (10 nm)/Si$_3$N$_4$ (20 nm)/SiO$_2$ (10 nm) was deposited. The electrodes were fabricated by depositing and patterning metal layers (Ti (20 nm), TiN (20 nm), Al (70 nm), and TiN (20 nm)) after forming contact holes. Under the device, an air gap was formed to minimize heat transfer from the microheater to the Si substrate. Using a radio frequency magnetron sputtering process, we deposited MOX (18 nm thick In$_2$O$_3$, 15 nm thick SnO$_2$, and 20 nm thick IZGO) films and patterned.

In$_2$O$_3$ Characterization. Point XPS data were obtained using a PHI VersaProbe III scanning XPS microprobe equipped with an Al K$_\alpha$ source. The resolution of the obtained point XPS was 10 μm × 10 μm, and the position of the device was found using a scanning X-ray image (SXI). The grazing incidence X-ray diffraction (GIXRD) data were obtained using an Xpert Pro (PANalytical).

Surface Oxygen Control Method. The surface oxygen control method was performed by applying the appropriate voltages to both ends of a heater. The temperature of the device was increased through the voltage difference across the heater; the gate bias application effect was obtained by increasing or decreasing both voltages applied to the ends, while maintaining the voltage difference across the heater. The surface oxygen control method was deliberately performed long enough (10 min) at 240 °C to see its effect clearly. During fast gas identification using linear response, the oxygen control step was performed at 160 °C for 5 s in both NO$_2$ gas and mixed-gas atmosphere. Both resistor terminals (source and drain) were grounded. The oxygen adsorption and desorption processes were performed at $V_{GS} = 5$ and $−5$ V, respectively. The temperature of the microheater was obtained using a resistance temperature detection method.44

Sensor Data Measurement. The sensor data were collected by using a probe station with the capacity for gas injection and ejection and a semiconductor parameter analyzer (B1500A, Agilent). The target gas was injected into the chamber at a rate of 200 mL/min after the concentration was adjusted in a homemade mixing chamber using a reference gas (air). 100–500 ppb NO$_2$, 10–50 ppm of H$_2$S, 500 ppb NO, 100 ppm of CO, and 100 ppm of NH$_3$ were used as target gases. The sensor was operated at 160 and 240 °C for NO$_2$ and NO gases and H$_2$S, NH$_3$, and CO gases reaction, respectively. The sensor was operated at 160 °C in the environment where the two gases (NO$_2$ + H$_2$S) were mixed. The steady-state responses of the sensor (5) were determined using the resistance ratio before and after the gas response; these values were calculated as follows.

\[
S_{NO_2}, S_{NO} = R_g / R_s
\]
\[
S_{H_2S}, S_{CO}, and S_{NH_3} = R_g / R_s
\]

where R_s and R_g denote the sensor resistance levels in air and the target gas, respectively. The mean and standard deviation values of the responses from five repeated gas reactions are shown using error bars.

Computational Details. DFT calculations were performed on an In$_2$O$_3$ (111) surface based on the GIXRD pattern of the indium oxide film (Figure S12); this surface was chosen because the (111) surface is the most thermodynamically favored termination surface.45 DFT calculations were conducted using the Vienna Ab initio Simulation Package (VASP).46 The Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional based on the generalized gradient approximation (GGA) was implemented.47 The cutoff energy for the plane-wave basis set was chosen as 450 eV, and spin-polarized calculations were performed for all structures. The slab structure contained 48 In$_2$O$_3$ units (240 atoms in total) with six O–In–O layers. The bottom three layers were fixed to reduce the computational cost. For O-rich and O-deficient structures, single monolayers of O atoms were added and removed from the pristine structures, respectively. For all slab structures, a vacuum of 15 was applied to avoid interactions between layers due to periodic boundary conditions. For the binding of H$_2$S and NO$_2$ molecules, 18 different sites were considered for the calculations. The binding energy (ΔE) values of the adsorbates were calculated by the following equation:

\[
\Delta E = E(\ast X) - E(\ast) - E(X)
\]

where X is the adsorbate molecule, $E(\ast X)$ and $E(\ast)$ are the total energies of the surface with and without X, respectively, and $E(X)$ is the total energy of X. Bader charge analysis was performed with code from Henkelman Group to obtain the charge transfer characteristics between the surfaces and adsorbates.48 The differences in charge values from Bader charge analysis and the number of valence electrons in pseudopotential files represent the oxidation states. The charge density difference plot was obtained by the following equation:

\[
\Delta \rho = \rho(\ast X) - \rho(\ast) - \rho(X)
\]

where X is the adsorbate molecule, $\rho(\ast X)$ and $\rho(\ast)$ are the charge densities of the surface with and without X, respectively, and $\rho(X)$ is the charge density of X. Structures with different electron densities were simulated by changing the number of electrons (NELECT) parameter of the VASP program. The NELECT tag determined the number of valence electrons in the system. From the default values of NELECT, values were increased or decreased by two to generate systems with larger or smaller electron densities, respectively.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.3c03034.

Fabrication processes of MOX devices; SEM and EDS mapping images of the device; Response characteristics of an In$_2$O$_3$ gas sensor as a function of oxygen manipulation temperature and time; Various In$_2$O$_3$ slabs for DFT calculations; Bader charge analyses of NO$_2$ and H$_2$S gas adsorption on the In$_2$O$_3$ (111) surface; Steady-state response of the sensor over time; Binding energy (ΔE) values of NO$_2$ at different In$_2$O$_3$ electron concentration; Transient responses of the sensors with gas desorption method; ΔE versus NO$_2$ gas concentration; GIXRD pattern; Area ratio of XPS peaks; Bader charge analyses (PDF)

AUTHOR INFORMATION

Corresponding Author
Jong-Ho Lee — Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea; Ministry of Science and ICT, Sejong 30121, Republic of Korea; orcid.org/0000-0003-3559-9802; Phone: +82-2-880-1727; Email: jhl@snu.ac.kr; Fax: +82-2-882-4658

Authors
Gyuweon Jung — Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea; orcid.org/0000-0003-0357-0933
Suyeon Ju — Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea; orcid.org/0000-0001-7033-8769
Kangwook Choi — Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea

Jaehyeon Kim — Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea

Seongbin Hong — Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea

Jinwoo Park — Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea

Wonjun Shin — Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea

Yujeong Jeong — Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea

Seungwu Han — Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea; orcid.org/0000-0002-6719-7608

Woo Young Choi — Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea

Complete contact information is available at: https://pubs.acs.org/10.1021/acsnano.3c03034

Author Contributions

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This work was supported by the BK21 FOUR program of the Education and Research Program for Future ICT Pioneers, Seoul National University, in 2023, and the National Research Foundation of Korea (2021R1A2C3009069).

ABBREVIATIONS
MOX, metal oxide; OV, oxygen vacancy; AOS, adsorbed oxygen species; DFT, density functional theory; XPS, X-ray photoelectron spectroscopy; GIXRD, glazing incidence X-ray diffraction; SEM, scanning electron microscopy

REFERENCES
(13) Blackman, C. Do We Need Ionosorbed” Oxygen Species? (Or, “a Surface Conductivity Model of Gas Sensitivity in Metal Oxides Based on Variable Surface Oxygen Vacancy Concentration”). ACS SensORS 2021, 3509–3516, DOI: 10.1021/acssensors.1c01727.
and Effective Water Splitting by Highly Reduced Cerium Oxide: The Role of O Vacancy Coordination. ACS Catal. 2018, 8 (5), 4354.

