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A B S T R A C T

The melting temperature, a crucial material property, is particularly challenging to measure accurately for
inorganic crystals. The data-driven approach emerges as a potential solution, although its effectiveness is
hindered by the limitation of available data. To counter this challenge, we implement transfer learning,
leveraging a vast computational database of atomization energy. We first pre-train a geometric-information-
enhanced crystal graph neural network (GeoCGNN) using atomization energies of approximately 36,000
materials that are computed by the density functional theory. Subsequently, the pre-trained model is fine-
tuned using melting temperatures measured for 799 crystals, encompassing 83 elements, ranging from unary
to quaternary systems. This transfer learning strategy decreases the root mean square error from 407 to 218
K, attesting to a marked improvement in prediction accuracy. Furthermore, transfer learning significantly
mitigates error variability across unary, binary, and ternary (or higher-order) systems, thereby enhancing
the reliability of predictions across a broader range of crystals. We also show that transfer learning allows
effective task adaptation by leveraging representation learned from pre-training. Therefore, it can achieve
better prediction performance even with a limited number of data for predicting melting points.
1. Introduction

The melting temperature (𝑇m) is a vital material property that
largely determines operation and processing temperatures [1,2]. How-
ever, accurate measurement of 𝑇m is challenging due to the sensitivity
of the procedure to experimental conditions, such as sample purity,
heating rate, and instrument calibration. Furthermore, complex phase
equilibria and incongruent melting complicate the determination of 𝑇m
in multicomponent systems.

Consequently, experimental data on 𝑇m are relatively scarce com-
pared to other fundamental properties such as crystal structure or heat
of formation. Density functional theory (DFT) based computational
methodologies offer an alternative to determine 𝑇m, either through
thermodynamic integration or direct simulation of the liquid–solid
interface [3,4]. However, these computational approaches can be pro-
hibitively expensive due to the high computational cost of DFT cal-
culations [5]. Recent advancements in machine learning potentials
have considerably mitigated these costs, yet the computational time
for DFT calculations required in constructing the training set remains
significant [6].
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Considering the challenges discussed above in both experimental
and theoretical aspects, predicting 𝑇m based on simpler parameters
would be beneficial. For instance, the Debye model [7] or the equation
of state [8] were utilized in predicting 𝑇m within physics-based models.
However, these approaches have been validated only for unary metal
systems.

More recently, data-driven machine-learning (ML) methods have
been attempted in predicting 𝑇m of diverse compounds [9–13]. To be
specific, Gu et al. used support vector regression (SVR) with kernels to
predict 𝑇m for binary and ternary compound semiconductors [9]. Their
database consisted of 25 III-V, II-VI binary compounds and 28 I-III-VI2,
II-IV-V2 ternary crystals. By encoding atomic features like electronega-
tivity and atomic mass into descriptors, they achieved a mean relative
error of 6% in 𝑇m prediction. Saad et al. predicted 𝑇m for 44 AB suboctet
solids (e.g., MgAu, LiAl) using ridge regression [10]. They utilized
elemental properties of the constituent atoms, such as electronegativity
and boiling point, as input features. The median relative error in their
predictions was 12.8%.

In another study, Seko et al. used both linear and non-linear re-
gression methods including SVR to predict 𝑇m for 248 A𝑥B𝑦 binary
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crystals that do not contain transition metals [11]. They employed
atomic features, similar to the descriptors used in Refs. [9,10], as well
as crystal properties like volume and bulk modulus. The incorporation
of crystal properties significantly improved the accuracy, resulting in a
root mean squared error (RMSE) of 262 K when using SVR. Pilania et al.
also utilized SVR with a Gaussian kernel to predict 𝑇m for 46 binary
crystals that satisfy the octet rule [12]. In addition to individual atomic
features, they introduced crystal properties calculated with DFT, such
as Born effective charges and nearest-neighbor distances, achieving an
RMSE of 150 K.

However, the above data-driven approaches tend to rely on chemi-
cally biased datasets that include only non-transition metals or specific
combinations of oxidation states. Such biased datasets may lead to
model overfitting in a specific domain and limit the generalizability
of the model to broader applications. In this respect, it is notable that
Hong et al. developed a graph neural network that can be applied to
a more general material class by training the model over experimental
and theoretical 𝑇m of 9375 compounds [13]. The model achieved an
RMSE of 160 K.

The data-driven prediction of 𝑇m is fundamentally constrained by
the data scarcity that originates from the low-throughput in both ex-
perimental and computational procedures. In material science, one way
to overcome such data scarcity, in particular experimental data, is to
employ transfer learning (TL) that involves pre-training with large the-
oretical databases and fine-tuning with smaller experimental datasets.
For instance, Jha et al. utilized a pre-trained model incorporating DFT
formation enthalpy of more than 10,000 materials, which is fine-tuned
with the formation enthalpy of 1643 experimental observations [14].
Pratik et al. applied TL to predict the capacitance of 4896 metal–
oxide–semiconductor (MOS) capacitors using knowledge transferred
from a dataset of 114,000 theoretical capacitance values [15]. Yamada
et al. made predictions on the heat capacity and conductivity of poly-
mers [16] by employing the theoretical heat capacities of monomers as
a pre-training set.

Motivated by the above discussions, we herein develop a TL ap-
proach with an aim to develop a ML model that predicts 𝑇m across
a wide range of materials. To the best of our knowledge, this is the
first attempt to apply TL in predicting 𝑇m. Given that the database of
theoretical 𝑇m is also limited due to the high computational cost of
DFT, we opt to utilize a theoretical property that is known for a large
number of materials. We also consider that the effectiveness of TL in
improving prediction accuracy is enhanced when the physical property
of the pre-trained set demonstrates a high correlation with the target
property [17].

Thermodynamically, the 𝑇m is closely related to the enthalpy of
fusion that quantifies the energy loss of crystals as the interactions
between atoms weaken during melting. This quantity in turn can
be roughly estimated using the atomization energy, which indicates
the energy of interactions between atoms in crystals. For instance,
Guinea et al. and Sankaran et al. have found approximately linear re-
lations between 𝑇m and atomization energies for metals and elemental
crystals, respectively, particularly at high temperatures [7,18]. Thus,
our TL strategy is as follows: We first pre-train a ML model using
the atomization energies of approximately 36,000 inorganic crystals
collected from the Materials Project [19]. Then, we use TL to fine-
tune the model with experimental 𝑇m data for 799 compounds from
the CRC Handbook [20]. As a ML model, we utilize the geometric-
information-enhanced crystal graph neural network (GeoCGNN) [21],
which has been demonstrated to outperform other graph-based models
in predicting crystal properties.

2. Method

2.1. Pre-training and target database

First, a pre-trained model is developed by utilizing atomization
energy data sourced from the Materials Project [19]. The pre-training
2

Fig. 1. The correlation between the 𝑇m and atomization energy. The dashed line
indicates the linear regression between them. The coefficient of determination (𝑅2

value) is 0.54.

database consists of approximately 36,000 crystals provided in
GeoCGNN, with the exception of some crystals for which atomization
energy data is unavailable. The hyperparameters for the model are set
to the same optimized values as those used in the previous study [21].
The dataset is partitioned into training, validation, and test sets with
respective ratios of 0.6, 0.2, and 0.2. The mean absolute error of
the pre-trained model is 0.038 eV/atom, while the distribution of
atomization energy of the database ranges from 0 to 9 eV/atom.

Next, a database of experimental 𝑇m is compiled using informa-
tion from the CRC Handbook [20]. Compounds exhibit sublimation,
explosion, or thermal decomposition such as peritectic melting were
excluded from the database. Since this work primarily focuses on
inorganic crystals, we also exclude organic and molecular systems
that possess significantly different physical properties from inorganic
compounds. The crystal structures were obtained from the Inorganic
Crystal Structure Database (ICSD) [22]. For materials that exhibit a
phase transition before reaching the melting stage, this procedure
may introduce inconsistencies between the crystal structure and its
corresponding melting point since GeoCGNN can detect the difference
between crystal structures even at identical compositions. Nevertheless,
we select the most stable structure in the Materials Project [19] among
polymorphs, assuming that this discrepancy would be negligible. In
fact, the variation of melting points between polymorphs in unary
systems is typically less than 100 K, within a range spanning from 500
K to 2500 K [23]. In total, the database comprises 799 compounds,
encompassing 83 different elements with unary to quaternary compo-
sition. Among them, the highest 𝑇m of 4153 K is found for TaC and Cs
has the lowest 𝑇m of 301.5 K.

As mentioned in the introduction, we choose the atomization energy
as the target property for the pre-trained model because it can be
collected for a large number of materials and is expected to have a
strong correlation with 𝑇m. In Fig. 1, atomization energies and 𝑇m are
scatter-plotted for crystals included in this study. It is seen that the
two physical quantities are well correlated, showing an 𝑅2 value of
0.54. Since the atomization energy varies between 0 and 9 eV/atom,
while 𝑇m ranges from 300 to 4000 K, the learnable parameters in
the optimized model could differ significantly, even though there is
a high correlation between these properties. To address this issue, a
normalization process is employed to align the scales between the
pre-trained and target properties [17,24]. Herein, a linear regression
function 𝑦 = 1.529(𝑥∕1000) + 2.645 (see a dashed line in Fig. 1) is
used to adjust the range of the pre-training set to the target values
of 𝑇m. Additionally, to investigate the effect of pre-training feature
selection on the accuracy of the resulting model, we also collect the
formation energy and band gap energy from the Materials Project [19]
as potential pre-training features, despite their low 𝑅2 values of 0.011
and 0.072, respectively (see Fig. S1).
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2.2. Transfer learning

Like pre-training, the TL is carried out by partitioning the 𝑇m
database into training, validation, and test sets with proportions of
0.6, 0.2, and 0.2, respectively. To preserve the knowledge from the
pre-trained model, TL adopts two strategies: reducing the learning rate
and freezing layers [17]. Both of them aim to optimize the parameters
of the model from the pre-trained space, taking advantage of conver-
gence compared to random initialization. In the reduced learning rate
approach, after loading all pre-trained parameters, the model updates
the parameters slightly to fit target properties with a reduced learning
rate. We tried a reduced learning rate of 1, 0.75, 0.5, and 0.25 times
the original learning rate of 1e−3. In similar manner, by fixing the
parameters in the frozen layers, the model can retain knowledge from
pre-training. The GeoCGNN model consists of an embedding block, a
series of gated convolution blocks, which includes a convolution layer
and a single perceptron layer, and an output block [21]. We select the
frozen layers in an embedding block and gated convolution blocks. For
the full details of the architecture of the GeoCGNN model, we refer to
Ref. [21].

Since there are a huge number of possible combinations of frozen
layers and learning rates, we employ the Taguchi method to identify
the optimal choice [25]. To be specific, a mixed orthogonal L16 (21241)
array in the Taguchi method is utilized, in which the first 12 columns
indicate whether a certain layer is frozen or not, and the final column
chooses a reduced learning rate from four values described above. For
the case of atomization energy as a pre-training dataset, the three
frozen layers and the same learning rate with pre-training are chosen.

3. Results and discussions

3.1. Model performance

As detailed in the previous section, the model (called Model-TL
hereafter) was initially pre-trained with atomization energies of approx-
imately 36,000 crystals, and then trained on the 𝑇ms of 799 crystals.
To investigate the impact of TL, we develop another model, referred
to as Model-FS. The Model-FS is trained ‘from scratch’ using 𝑇ms of
the same crystals as in Model-TL, but without utilizing any pre-training
process, unlike Model-TL. In Fig. 2, we present a scatter plot comparing
the experimental 𝑇m with the predicted 𝑇m values for the test set (160
materials). For the Model-FS in Fig. 2(a), the RMSE is 407 K (or the
mean relative error of 25.5%). The accuracy significantly improves with
the Model-TL with an RMSE of 218 K (or the mean relative error of
12.6%). In addition, outlier crystals in Model-FS such as Re, SiC, Ce2S3,
and KAsO3 [see dashed circles in Fig. 2(a)] become more accurately
described by Model-TL. This indicates that the inclusion of atomization
energy information in Model-TL contributes to its ability to learn the
relationship between the crystal structure and 𝑇m. The error of Model-
TL is comparable to those in previous studies [9–13]. However, we note
that the previous studies focused on specific material domains [9–12]
or ten times larger database than the present work [13].

As a test, when formation energy and band gap energy were used for
pre-training, the resulting RMSEs in predicting melting points were 269
K and 450 K, respectively. These performances are inferior compared
to the Model-TL pre-trained with atomization energy, which achieved
an RMSE of 218 K. Our findings underscore the significance of the
resolution in the pre-training feature and the relationship between
the pre-training feature and target property in TL. In particular, at-
omization energy aids in distinguishing unary crystals with various
energy values, whereas formation energy fails in this aspect, providing
a constant value of zero for unary crystals. Furthermore, employing
band gap energy as a pre-training feature resulted in decreased model
accuracy (450 K) compared to Model-FS which is trained solely on
melting points without pre-training (407 K). This can be attributed to
the indirect influence of electronic properties, like band gap energy,
3

Fig. 2. Parity plots of reference 𝑇m and 𝑇m predicted by (a) Model-FS and (b) Model-
TL for the test set (160 materials). Several crystals with high errors at Model-FS are
highlighted in dashed circles.

on the melting mechanisms, unlike atomization energy and formation
energy. Additionally, the absence of band gaps in metallic compounds
results in a null value for band gap energy, further complicating the
performance of the model. Therefore, TL can be more advantageous
when a pre-training feature is directly related to the target property
with a distinguishable value. Conversely, if the physical meaning of
the pre-training feature is not related to that of the target property,
it is more beneficial to exclude such features from the TL.

3.2. Model accuracy depending on material types

In this subsection, we examine the model accuracy and the impact of
TL depending on the material types. We first classify the database (799
materials) with respect to the number of elements, i.e., unary, binary,
and ternary (or higher-order) materials. The distributions of population
and 𝑇m are shown at the top and bottom of Fig. 3(a), respectively.
It is seen that the binary crystals dominate the population. Such an
imbalance in the dataset can lead to significant errors in the model,
especially for relatively sparse datasets like unary crystals.
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Fig. 3. Distribution and test set RMSE of 𝑇m by each crystal group. (a) Distribution in the database and (b) test set RMSE of 𝑇m by the number of elements in the crystals.
(c) Distribution in the database and (d) test set RMSE of 𝑇m with and without transition metals. The solid and dashed lines in (b) and (d) indicate the RMSE of Model-FS and
Model-TL, respectively.
In Fig. 3(b), we evaluate the accuracy of the model and the influence
of TL for each subset. With regards to Model-FS, it demonstrates
satisfactory predictions for binary and ternary systems but encounters
increased errors when predicting unary systems. The observed outcome
can be ascribed to two key factors: Firstly, unary systems represent only
a small portion of the database. Secondly, their unique data charac-
teristics complicate accurate prediction. To elaborate, unary systems
predominantly consist of elemental metal crystals, and these metal
elements often form similar crystal structures such as face-centered
cubic (FCC) and body-centered cubic (BCC). For example, both Na
and Fe adopt BCC structures with comparable bond lengths (4.50 and
4.52 Å, respectively) [26]. As a result, the edge features of the crystal
graph in GeoCGNN are almost indistinguishable for these elements,
and the primary distinguishing factor is the node feature that one-hot
encodes the atomic number. However, despite the similarities in input
data, output 𝑇m differs significantly, with Na having a 𝑇m of 371 K and
Fe having a 𝑇m of 1811 K. The output range for unary systems extends
from 300 to 3500 K [see Fig. 3(a)], making accurate prediction of 𝑇m
challenging for the Model-FS given the limited available information.

In Fig. 3(b), the application of transfer learning, Model-TL, results
in improved prediction accuracy, along with reduced error deviations
between unary, binary, and ternary systems. In particular, the unary
systems exhibit the most significant improvement in accuracy when
transfer learning is applied, likely a consequence of the features inter-
nalized during pre-training: Among the material types in the present
database, elemental metals display the highest correlation coefficient
(𝑅2 = 0.79) between atomization energy and 𝑇m, thereby indicating a
particularly effective knowledge transfer.

Conversely, the enhancement in accuracy for ternary systems is
relatively modest. This can be attributed to the weak correlation be-
tween atomization energy and the 𝑇 of ternary crystals. For example,
4

m

inorganic crystals containing polyatomic ions, such as sulfate and car-
bonate, are predominantly found within the ternary crystal group.
During the melting process, these polyatomic ions remain undissoci-
ated [27], but atomization energy presumes the complete dissociation
of all bonds for each atom within the crystal. Consequently, ternary
crystals, with 𝑇m in the range of 500 to 1500 K, exhibit a relatively
high average atomization energy of 5.01 eV/atom, whereas unary and
binary systems present average atomization energies of 3.10 and 3.78
eV/atom, respectively. This implies limited improvements in prediction
accuracy for ternary or higher-order crystals when using atomization
energy of the entire system as the pre-training set.

One might have an interest in particular systems for TL, where
the correlation between a pre-training feature and target property is
concerned. For instance, ternary systems show the upshifted linear
correlation due to their unique melting mechanism compared to unary
and binary systems as discussed before. Because the atomization en-
ergy and melting point data for ternary compounds alone had an 𝑅2

value of 0.57 [see Fig. S2(a)], we reduced the RMSE of the ternary
system from 230 K to 207 K, underscoring the benefits of targeted
data collection. Based on the fact that atomization energy correlates
well with 𝑇m by representing the thermal stability of crystals, other
thermodynamic properties might be beneficial. Herein, we investigate
thermal properties that are related to hull energy as a pre-training
set for ternary system. To be more specific, we utilize decomposition
energy and formation energy. These properties might offer insights
to the dissociation into a stable phase, rather than just individual
atoms, addressing the distinctive melting processes observed in ternary
compounds, as previously discussed. However, decomposition energy,
representing the energy difference between a compound and its com-
peting compounds in a given chemical space [28], showed negligible
correlation with melting points in ternary systems with 𝑅2 of less
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than 0.01. This can be attributed to the presence of other stable solid
compounds within the same chemical space. Conversely, the formation
energies exhibited a moderate correlation with an 𝑅2 value of 0.51 with
melting points in ternary systems [see Fig. S2(b)] compared to entire
systems with 𝑅2 value of 0.011. For ternary compounds alone, using
formation energy and melting point data as a pre-training feature and
target property, respectively, resulted in an RMSE of 236 K, lower than
the RMSE of 269 K observed when using formation energy for the entire
dataset. This suggests that formation energy can be an effective alterna-
tive to atomization energy for enhancing model accuracy, particularly
when atomization energy data is challenging to collect. These results
highlight the importance of focusing on the target material system
with relevant pre-training features. Concentrating on a specific class of
materials enables the model to capture relationships pertinent to that
class, leading to improved accuracy.

According to Saad et al. the inadequate representation of 𝑑 electrons
resulted in significant prediction errors in crystals containing 𝑑-block
elements [10]. To investigate if this issue persists in our models, we
classify the crystals into two categories: those containing transition
metals (TMs) and those without. As illustrated in Fig. 3(c), the number
of crystals both with (w/ TM) and without TMs (w/o TM) is similar.

In Fig. 3(d), we assess the prediction accuracy for crystals with
and without TMs. The error level remains practically identical in both
cases, at variance with Ref. [10], where higher errors were noted for
crystals containing TMs. This discrepancy can be traced back to the
difference in the prediction model. In Ref. [10], TM prediction was
dependent on predefined descriptors, which might fail to capture the
complex behavior of 𝑑 electrons adequately. In contrast, GeoCGNN
utilizes learnable parameters for atomic feature embedding, facilitating
the representation of elements regardless of their shell structures. More-
over, the enhancement in prediction performance achieved through
TL is similarly significant for both crystal subsets, irrespective of the
presence or absence of TMs.

3.3. Effect of TL by dataset size and composition

Given the challenges associated with measuring 𝑇m, it would be
important to predict 𝑇m with a small number of experimental observa-
tions. To assess the effect of TL for limited size of dataset, we randomly
sample 20 to 480 training data points from the original database. For
all the sizes of the training set, we evaluate the RMSE on a common
test set with five independent models. In Fig. 4, we present the RMSE
of both Model-FS and Model-TL for each data size. We found significant
variations in model performance based on the size of the training set
[see Fig. 4(a)]. The accuracy of Model-TL trained with only 50 crystals
with RMSE of 422 K is comparable to that of Model-FS trained with the
entire database with RMSE of 407 K. It is also seen that as the data size
shrinks, the accuracy of Model-FS degrades more rapidly than Model-
TL. This indicates that the role of TL becomes increasingly important
as the dataset size decreases, offering high accuracy for 𝑇m prediction
in limited data size.

We have conducted further analyses to assess the impact of different
subsets of training data on model accuracy. We categorized the training
set into unary, binary, and ternary groups based on the number of
elements in the compounds. This division was meant to enable the
model to specialize in particular material classes. We labeled the model
as ‘Model-TL-unary’, ‘Model-TL-binary’, and ‘Model-TL-ternary’ for the
model exclusively trained by melting points of unary, binary, and
ternary systems, respectively. Their maximum training set sizes were
50, 313, and 125. For the Model-TL-unary, the RMSE decreased steadily
from 732 K to 559 K with an increasing size of training set size
from 20 to 50 data points. However, for binary and ternary systems,
the RMSE remains relatively constant across varying the size of the
training set. This distinct discrepancy likely stems from the inherent
similarity in the crystal graph of unary systems. Every single data point
in unary systems would be beneficial in increasing the accuracy by
5

Fig. 4. Test set RMSEs of Model-FS, Model-TL, and its variations. (a) RMSEs for varying
the size of the training set. (b) RMSEs for subsets in the test set at training points of
50. The shades in (a) stand for the standard deviation of 5 models.

distinguishing the melting points between crystals that have similar
crystal graphs. At an equal training set size of 50 data points [see
the dashed line in Fig. 4(a)], the Model-TL-binary achieves the lowest
RMSE of 411 K, compared to 559 K and 674 K for the Model-TL-unary
and Model-TL-ternary, respectively. This outcome can be attributed to
the binary system comprising about 70% of the test set. However, as
the training set size increased, the RMSE for the model trained on
binary system data deviated from Model-TL, indicating that knowledge
from binary systems meets challenges in predicting the melting points
of other material classes. In addressing the performance of the model
across specific material classes, we have analyzed the impact of varying
the subsets in the training set [see Fig. 4(b)]. The results indicate
that models tailored to specific material classes demonstrate superior
performance in predicting the melting points of their respective target
classes compared to the general Model-TL. The improvements in RMSE
for Model-TL-unary, Model-TL-binary, and Model-TL-ternary are 71 K,
62 K, and 128 K, respectively. However, it is noteworthy that while
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these specialized models excel in their respective domains, they exhibit
increased RMSEs when predicting melting points outside their trained
material class. The results from the impact of the size of the training set
and subset division regarding transition metals can also be explained in
the same manner (see Fig. S3). Therefore, for practitioners focused on a
particular material class, prioritizing data collection and training within
that specific subset offers a more effective approach than compiling a
more generalized dataset.

4. Conclusions

In summary, we suggested a TL procedure for predicting the 𝑇m
for inorganic crystals by pre-training the ML model with a large DFT
database of atomization energies. Owing to the underlying relation
between 𝑇m and atomization energy, TL provides a significant enhance-
ment of about 46% in accuracy compared to training 𝑇m from scratch.

ther pre-training features such as formation energy and band gap
nergy resulted in RMSEs of 269 and 450 K, respectively, which are
igher than 218 K from atomization energy due to their low resolution
n specific crystals and weaker correlation with target properties.

Moreover, it effectively reduced the deviation in error levels be-
ween different crystal groups, enabling more reliable predictions for

broader range of crystals. Although we observed the enhancement
f TL is diminished on ternary crystals where the correlation between
he pre-training feature and target property is concerned, by using only
he atomization energy of ternary crystals, we can reduce RMSE from
30 K to 207 K with respect to ternary crystals. The capability of TL in
ffective task adaptation for a limited dataset was demonstrated, as it
chieves a similar level of accuracy while utilizing only about 10% of
he original dataset. Additionally, we confirmed that accuracy enhance-
ent respective to the size of the dataset also varies by the composition

f the training set. The present study illustrates how the computational
atabase can effectively mitigate the scarcity of experimental data, a
ommon challenge inherent in material science.
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