Supplementary Information for

Lanthanum doping enabling high drain current modulation in a p-type tin monoxide thin-film transistor

Sungyeon Yim¹, Taikyu Kim¹, Baekeun Yu¹, Xu Hongwei¹, Yong Youn², Seungwu Han², and Jae Kyeong Jeong¹

¹Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea

²Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea

AUTHOR EMAIL ADDRESS: J. K. Jeong (jkjeong1@hanyang.ac.kr)

Figure S1. XP spectra of Sn $3d_{5/2}$ for the SnO films with different La loadings (a) before PDA, (b) after PDA at 250 °C, and (c) after PDA at 300 °C. (d) XP spectra of Sn $3d_{5/2}$ for the SnO films with different oxygen pressure on 1.9 at% loadings after PDA at 250 °C.

Figure S2. XP spectra of (a) Sn 3d and (b) Sn 4d for the La-free SnO films post-annealed at 250 °C for 1 hr.

Figure S3. Electrical properties of 250 °C annealed SnO films with different La loadings from Hall effect measurement. Black line (left y-axis) is Hall mobility, and red line (right y-axis) is a free hole carrier concentration measured from Hall measurement.

Figure S4. (a) XPS survey spectra, XP spectra of (b) La 3d, (c) Sn 3d, and (d) O 1s for the SnO films annealed in 300 °C with different La loadings. Chemical compositions including Sn^0 , Sn^{2+} , and Sn^{4+} of SnO films with different La loadings, which were de-convoluted from XP spectra of (e) Sn 3d and (f) O 1s.

Figure S5. (a) XPS survey spectra, XP spectra of (b) La 3d, (c) Sn 3d, and (d) O 1s for the SnO films annealed at 250 °C with different oxygen pressure on 1.9 at% loadings. Chemical compositions including Sn^0 , Sn^{2+} , and Sn^{4+} of SnO films with different oxygen pressure on 1.9 at% La loadings, which were de-convoluted from XP spectra of (e) Sn 3d and (f) O 1s.

Figure S6. Transfer characteristics of the SnO TFTs with different La loadings of (a) 0 at% and (b) 1.9 at% after the PDA at 250 °C for 1 hr under the forming gas atmosphere. The corresponding output characteristics of the SnO TFTs with different La loadings of (c) 0 at% and (d) 1.9 at%.

Figure S7. Transfer characteristics of the 1.9 at% La-loaded SnO TFTs annealed in 250 °C with different oxygen partial pressures of (a) 3.23 %, (b) 3.85 at%, and (c) 4.46 at%. The corresponding output characteristics of the 1.9 at% La-loaded SnO TFTs with oxygen partial pressures of (d) 3.23 %, (e) 3.85 %, and (f) 4.46 %.

Figure S8. Transfer characteristics of the SnO TFTs annealed at 300 °C with different La loadings of (a) 0 at%, (b) 0.8 at%, and (c) 1.9 at%. (d) The output characteristics of the SnO TFTs with 1.9 at% La loadings

Figure S9. Comparisons of the trade-off between the saturation mobility and $I_{ON/OFF}$ ratio for the SnO TFTs fabricated at the various annealing temperatures. For fair comparison, the SnO TFTs with SiO₂ gate dielectric and non-passivated devices were collected. It can be shown that the performances of SnO TFTs reported in the literatures were deteriorated at the higher annealing temperature (> 300 °C) compared to those at the lower annealing temperature (< 300 °C). The introduction of La cation into the SnO channel allowed the resulting transistor to exhibit the higher mobility and $I_{ON/OFF}$ ratio due to the La-induced efficient suppression of Sn⁴⁺, as shown in Figure 8b.

XP Spectra	Sn⁰(%)	Sn ²⁺ (%)	Sn ⁴⁺ (%)
Sn 3d _{5/2}	3.8	70.9	25.3
Sn 4d _{5/2}	5.7	69.7	24.6

Table S1. Chemical compositions including Sn⁰, Sn²⁺, and Sn⁴⁺ of the La-free SnO films post-annealedat 250 °C for 1 hr states, which was de-convoluted from XP spectra of Sn $3d_{5/2}$ and Sn $4d_{5/2}$.

Table S2. Chemical compositions including Sn^0 , Sn^{2+} , and Sn^{4+} of as deposited SnO films with different La loadings, which were de-convoluted from XP spectra of Sn 3d and O 1s.

	Sn 3d			O 1s		
La Loading in SnO film [at%]	Sn ⁴⁺ (486.8 ± 0.1 eV)	Sn ²⁺ (486.1 ± 0.1 eV)	Sn ⁰ (484.6 ± 0.1 eV)	O _{chem} (531.75 eV)	O+Sn ⁴⁺ (530.25 eV)	O+Sn ²⁺ (529.55 eV)
0	5.4	43.2	51.4	4.1	41.7	54.2
0.8	11.7	46.1	42.2	4.5	38.8	56.7
1.9	12.5	47.2	40.3	0.8	41.1	58.1
3.1	13.7	53.0	33.3	4.4	34.0	61.6

 Table S3. Chemical compositions including Sn⁰, Sn²⁺, and Sn⁴⁺ of SnO films annealed at 250

'C with different La loading	s, which were de-convoluted from X	(P spectra of Sn 3d and O 1s.
------------------------------	------------------------------------	-------------------------------

	Sn 3d			O 1s		
La Loading in SnO film [at%]	Sn ⁴⁺ (486.4 ± 0.3 eV)	Sn ²⁺ (485.7 ± 0.3 eV)	Sn ⁰ (484.2 ± 0.3 eV)	O _{chem} (531.75 eV)	O+Sn ⁴⁺ (530.25 eV)	O+Sn ²⁺ (529.55 eV)
0	25.3	70.9	3.8	3.7	27.4	68.9
0.8	23.4	74.2	2.4	3.8	23.1	73.1
1.9	16.9	79.7	3.4	3.9	17.4	78.7
3.1	19.2	65.4	15.4	3.1	33.7	63.2

Table S4. Hall effect measurements for the SnO films with different La loadings of 0 and 1.9 at%, which were annealed in forming gas atmosphere in 250 °C.

La Loading in SnO film [at%]	majority carrier type	μ _{Hall} (cm²/Vs)	N _{Hall} (cm ⁻³)
0	electron	1.2 ± 0.9	$4.0 (\pm 2.7) \times 10^{18}$
1.9	electron	3.5 ± 3.7	$1.7 (\pm 0.9) \times 10^{19}$

Table S5. Chemical compositions including Sn⁰, Sn²⁺, and Sn⁴⁺ of SnO films annealed at 250 °C with different oxygen pressure on 1.9 at% La loadings, which were de-convoluted from XP spectra of Sn 3d and O 1s.

Oyygen	Sn 3d			O 1s		
partial pressure [%]	Sn ⁴⁺ (486.4 ± 0.3 eV)	Sn ²⁺ (485.7 ± 0.3 eV)	Sn ⁰ (484.2 ± 0.3 eV)	O _{chem} (531.75 ± 0.2 eV)	O+Sn ⁴⁺ (530.25 ± 0.2 eV)	O+Sn ²⁺ (529.55 ± 0.2 eV)
3.23	15.3	81.7	3.0	3.9	17.4	78.7
3.85	3.8	90.6	5.6	2.7	4.8	92.5
4.46	5.9	92.2	1.9	1.1	5.3	93.6
5.06	5.7	90.5	3.8	1.1	9.2	89.7

Reference

- (1) Nomura, K.; Kamiya, T.; Hosono, H. Ambipolar Oxide Thin-Film Transistor. *Adv. Mater.* **2011**, *23*, 3431–3434.
- Han, Y.; Choi, Y.; Jeong, C.; Lee, D.; Song, S.-H.; Kwon, H.-I. Environment-Dependent Bias Stress Stability of *p*-Type SnO Thin-Film Transistors. *IEEE Electron Device Lett.* 2015, *36*, 466–468.
- (3) Luo, H.; Liang, L. Y.; Liu, Q.; Cao, H. T. Magnetron-Sputtered SnO Thin Films for *p*-Type and Ambipolar TFT Applications. *ECS J. Solid State Sci. Technol.* **2014**, *3*, Q3091–Q3094.
- (4) Dhananjay; Chu, C.-W.; Ou, C.-W.; Wu, M.-C.; Ho, Z.-Y.; Ho, K.-C.; Lee, S.-W. Complementary Inverter Circuits Based on *p*-SnO₂ and *n*-In₂O₃ Thin Film Transistors. *Appl. Phys. Lett.* **2008**, *92*, 232103.
- (5) Ou, C.-W.; Dhananjay; Ho, Z. Y.; Chuang, Y.-C.; Cheng, S.-S.; Wu, M.-C.; Ho, K.-C.; Chu, C.-W. Anomalous *p*-Channel Amorphous Oxide Transistors Based on Tin Oxide and Their Complementary Circuits. *Appl. Phys. Lett.* **2008**, *92*, 122113.
- (6) Liang, L. Y.; Liu, Z. M.; Cao, H. T.; Yu, Z.; Shi, Y. Y.; Chen, A. H.; Zhang, H. Z.; Fang, Y. Q.; Sun, X. L. Phase and Optical Characterizations of Annealed SnO Thin Films and Their *p*-Type TFT Application. *J. Electrochem. Soc.* **2010**, *157*, H598–H602.
- (7) Okamura, K.; Nasr, B.; Brand, R. A.; Hahn, H. Solution-Processed Oxide Semiconductor SnO in *p*-Channel Thin-Film Transistors. *J. Mater. Chem.* **2012**, *22*, 4607–4610.