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The crystalline ice is known to have the “residual entropy” in the low temperature limit. We show
that the residual entropy of ice may be reformulated in terms of the fractional exclusion statistics of
Haldane at T" = 0 with the statistical interaction parameter o = 0.867. In other words, the fractional
exclusion at T' = 0 implies the broken third law of thermodynamics. Then the question arises whether
the chemistry-driven fractional exclusion statistics in ice has anything to do with the topology-driven
anyon (fractional phase) statistics as in the case of the quasi-particles in FQHE. In the present study,
we perform electronic structure calculations for ice in order to probe the Born-Oppenheimer energy
surface. We find the possibility that there exist Berry’s phase contributing to the residual entropy
(macroscopic ground-state degeneracy), establishing the connection between the fractional exclusion

and the fractional phase.

It is well known that there exists residual entropy in
ice, which fact has long been confirmed by many exper-
iments [1-4]. The residual entropy was obtained by per-
forming heat capacity measurements of ice down to 0.2
K [1], and its value is 0.82 cal./mol-K for hydrogen ox-
ide {2] and 0.77 for deuterium oxide [3]. By assuming a
random distribution of hydrogen bonds within the con-
straint of the so called ice rule, Pauling estimated the
entropy as 0.806 cal./mol K. Although this idea is purely
classical, the agreement with experiment is excellent. A
more sophisticated series expansion method yielded 0.815
cal./mol-K [5] in even closer agreement with the exper-
imental value for the hydrogen oxide (i.e., the ordinary
ice).

From a theoretical point of view, the existence of fi-
nite residual entropy means the broken third law of ther-
modynamics, posing a question whether there may ex-
ist a fundamental symmetry principle {or a violation of
it) related to the broken third law in ice. In a previ-
ous paper published elsewhere [6], we showed that the
residual entropy of ice may be reformulated in terms of
fractional exclusion statistics of Haldane [7] in the T = 0
limit with the calculated statistical interaction parameter
a = 0.867. We estimated the potential barrier separating
different energy minima in the Born-Oppenheimer energy
surface for the hydrogen configuration space. The effect-
ive barrier height per hydrogen was < 0.2 eV, which is
not large at all. Then we addressed the puzzle that, if
different energy minima are separated by finite barriers,
the macroscopic degeneracy of the energy minima would
be lifted by quantum mechanical tunneling and the true
(quantum-mechanical) ground state, being a linear su-
perposition of these states localized in respective energy

minima, should be nondegenerate in energy. It would
imply the absence of the residual entropy, in contradic-
tion to the experimental observation of it. The resolution
we proposed to overcome this conceptual dilemma was
that there may arise Berry’s phase [8] in ice. If Berry’s
phase should exist in the electronic structure of ice, the
macroscopic degeneracy could be explained in terms of
the well-known ground-state degeneracy (corresponding
to a nonzero ‘pseudo’ angular momentum of the ground
state) in the presence of Berry’s phase. For Berry’s phase
to appear, it is necessary that the trajectory of the ionic
configuration (the slow variable) encloses a point (in the
hydrogenic configuration space) at which the correspond-
ing electronic states (the fast variable) are degenerate.
Now it is extremely desirable to do realistic calculations
to obtain a more convincing value for the barrier height
as well as the precise hydrogenic configuration at which
the electronic states are degenerate. In the first half of
the present paper, we will review the relation between
the fractional exclusion statistics and the broken third
law of thermodynamics in crystalline ice. This part has
been published in Ref. 6. In the latter half of it, we
will present the results of our recent calculations on the
barrier height separating energy minima and the hydro-
genic configuration that may give rise to Berry’s phase
« = 7 locally, hence contribute to the macroscopic over-
all ground-state degeneracy of order a™(a > 1). We will
first outline below the existence of finite residual entropy
in ice and the reformation of it in terms of the fractional
exclusion statistics.

The stable structure of ice at low temperatures is
known to be hexagonal and each oxygen atom is sur-
rounded by four nearest-neighbor oxygen atoms. There
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are two chemical constraints for the hydrogenic config-
urations, namely, (1) that there be one hydrogen atom
between any pair of neighboring oxygen atoms and (2)
that there be two hydrogen atoms near to ( and two hy-
drogen atoms away from ) a given oxygen atom. Con-
sequently, the local configuration around an oxygen atom
in ice is HzO-molecule-like. For convenience in present-
ation, we assume that the first constraint is already sat-
isfied by the stoichiometric (H;0) ice (violation of which
would cost too much energy), and we will from now on
call the second constraint as the ice rule. In general, a
hydrogen atom located between oxygen atoms I and II
can occupy either one of two equilibrium sites, one near
to atom I (site A) and the other near to atom II (site B).
Therefore, before the ice rule is imposed, the total num-
ber of possible hydrogenic configurations is 22V, where
N is the number of oxygen atoms which sets the system
size. It was a famous problem in statistical mechanics
to count the number of different configurations satisfying
the ice rule in the thermodynamic (large N) limit, and
the answer [5] turned out to be ~ 1.507V.

Now we can map the statistics of the hydrogenic con-
figuration under the ice rule onto the fractional exclusion
statistics. The situation of the maximal degeneracy (22V)
in the absence of the ice rule is mapped to the bosonic
statistics, complete vanishment of the configurational de-
grees of freedom to the fermionic statistics, and the inter-
mediate (realistic) case to the fractional statistics. Follow-
ing Wu’s formalism [9], if there are N, identical particles
occupying G one-particle states of identical energy, the
number of Np-particle states (i.e., the degeneracy of the
many-body system) W is

[G+ (N, = 1)(1 = a)]! )
[G—aN,— (1-a)]'N,!

W (G, Np,a) =

a = 0 corresponds to bosons, a = 1 to fermions, and
0 < a < 1 to particles of fractional statistics interpol-
ating between the two limits. On the other hand, with

use of the identity 22V = Zi‘N:O (2:) where (gg) =
2N!/m!(2N — m)!, the logarithm of the total number of
states of ice for N oxygens without the ice rule in the

thermodynamic limit would be
2N
2N 2N
an(m) ~ In (N)

" oo (QNN— 1) | @

In the first line of Eq.(2), regarding m as the variable
number of particles, we retain only the largest term in
the summation in the spirit of the equivalence between
the grand canonical ensemble and the canonical ensemble.
(Or, we simply apply Stirling’s formula.) In the second

line, (”‘j\;l) may immediately be interpreted as the de-

generacy of many-boson states when G (number of one-
particle states)= N and Ny(number of particles)= N.
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With G = N, = N, the number count for a frozen-in state
having no configurational degrees of freedom is trivially

(fi) = (ﬁ) = 1, corresponding to the degeneracy of N
fermions occupying N states. In other words, G and N,
of ice are uniquely determined under the two “boundary
conditions”, W(G, Np,0) = 2NIn2 and W(G, N,, 1) = 0.
Of course, G = Np = N corresponds to the case where
the crystalline ice does not have any deficit or excess of
hydrogen atoms or other defects in bonds. The configur-
ational entropy of real ice is kN In 1.507, a value between
the two extremes. o for ice is obtained by substituting
G = N, = N in Eq.(1) (we neglect 1 compared to N
whenéver convenient) and comparing it with the residual
entropy,

NIn1507~ (2—a)NIn(2-a)— (1 - a)NIn(l —a) .
(3)

We obtain a = 0.867. To recapitulate, two possible sites
(A and B) for each hydrogen atom would be fully avail-
able if the presence of other hydrogen atoms in neigh-
boring bonds would not restrict the freedom of choice
between A and B (just as the presence of other particles
does not restrict the availability of states in boson statist-
ics), but other hydrogen atoms do impose some statistical
constraint (i.e., certain, but not all, states become ex-
cluded) in reality and the measure of the constraint in ice
is @ = 0.867. In this formulation, the basic requirement
for the fractional exclusion statistics [7] is automatically
satisfied: G (=N) is finite and extensive, proportional
to the size of the condensed matter region because N is
defined to be the system size.

We want to note that the “particles” in the fractional
statistics are not necessarily true ezcitations of any kind.
In the present case, we are counting the ground-state de-
generacy of the N-particle system. The distinction is im-
material because the particles in the degenerate ground
states may be regarded as being created from the null
state just as excitations are created from the ground state.
When the reduction of the degeneracy by the chemical
constraint is converted into the statistics of the nonin-
teracting particles of fractional a, the meaning of the
“particles” and “one-particle states” becomes rather ab-
stract. Suppose we assign A and B to two possible hy-
drogenic sites for every bond between oxygens as before.
Any hydrogenic configuration of the whole system can
be described by a sequence of A’s and B’s (with 2N of
them in total) representing the sites actually occupied by
hydrogens. Then we identify A with a “particle” and B
with a “wall dividing one state from another” (so that
the number of B’s is equal to G — 1). The most prob-
able values for the number of A’s and B’s are both N.
We can easily check that aforementioned mapping to the
fractional exclusion statistics is accomplished this way.

We have stated, in terms of the Born-Oppenheimer en-
ergy surface, that there are 1.507VN potential minima of
equal well depth corresponding to ice-rule-satisfying con-
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figurations. What we have so far neglected is the kin-
etic part, namely, the quantum mechanical tunneling and
the corresponding energy-level splitting. Of course, the
tunneling splitting of energy levels decreases as the bar-
rier height increases and the states become practically
degenerate. However, if the potential barrier becomes
too high, a particular hydrogenic configuration is frozen-
in and other configurations are inaccessible. It was Ma
[10] who correctly stated, on the question of the resid-
ual entropy of glasses, that “as T — 0, motions stop and
entropy also tends to zero. The third law (of thermody-
namics) cannot be violated.” The often-claimed residual
entropy of glasses obtained by integrating C, /T is an ar-
tifact of the irreversibility of the thermal process which
causes the inequality

/ ’ C,/T dT < AS(= S(T) - $(0)) . (4)

This explains why the measured residual entropy of
glasses is not unique or reproducible (sample- and
history-dependent). The situation in the crystalline ice,
however, is quite different. Careful experiment always
produces the same residual entropy and it coincides pre-
cisely with the theoretically anticipated value. The crys-
talline ice, despite its random hydrogenic configuration,
does not in general exhibit characteristics of glasses (e.g.,
glass transition, hysteresis, or frustration). If we regard

(AS - fDT C,/T dT) as a measure of irreversibility, this
quantity for ice must be negligibly small. In this context,
we note Ma also mentioned in the same reference [10]
that the residual entropy can be nonzero if the ground
state is truly degenerate (as opposed to being frozen as
in glasses). The measured residual entropy of ice is likely
to reflect the truly accessible states down to the experi-
mental temperature(0.2K). In combination with informa-
tion available in the literature [11-13], we roughly estim-
ated that the minimum barrier per hydrogen tunneling
~ 0.12 eV. (The actual calculations which give the upper
bound of the minimum barrier height will be described in
the latter half of the paper.) The corresponding tunneling
time turns out to be ~ 10~ "s. It means that, within the
specific heat measurement time (1~ 10*s), tunneling can
occur frequently to probe enough of the available config-
uration space.

It is ironic, however, that the very existence of quantum
tunneling undermines the finite residual entropy. In the
presence of quantum tunneling between potential min-
ima, a new nondegenerate ground state is formed by the
linear combination of these configurations with equal coef-
ficients and the tunneling splitting of energy levels follows.
( We want to emphasize that, at such a low T ~ 0.2K we
are in, the quantum tunneling rate is much greater that
the thermal hopping rate and the coherent description of
pure eigenstates is valid. } The estimated energy split-
ting should be greater than 0.1 meV, much too great to
pass undetected in the specific heat measurement at 0.2K.
In other words, accessibility to many potential minima
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does not explain the finite residual entropy. To overcome
this dilemma, we have made a rather unusual proposal,
namely, that there appear Berry’s phase in ice. A crucial
point here is that the ice consists not only of nuclei but
also of electrons. As protons move from one configura-
tion to another, electrons follow protons’ motion and the
many-electron wavefunction changes as well. It has been
proved in the literature that the electronic state (the fast
variable) picks up Berry’s phase v = = if the trajectory
of the ionic configuration (the slow variable) encloses a
point at which the electronic states are doubly degener-
ate. Such phenomena are known to occur at defects in
crystals [14] or in Nag molecules [15]. Therefore, the fi-
nite residual entropy and the subsequent violation of the
third law of thermodynamics in the practical sense are
expected based on the existence of Berry’s phase. But
the question remains whether the energy barrier we have
estimated from information in various literatures and our
simple model calculation reflects the true minimum value.
Furthermore, the existence of the hydrogen configuration
at which the electronic states are degenerate is yet to be
confirmed. The next half of our paper is devoted to the
realistic calculations of the electronic and atomic struc-
tures of ice that gives us the upper bound of the minimum
energy barrier as well as a hydrogenic configuration with
doubly degenerate electronic states. These results provide
supporting evidence for our conjecture of Berry’s phase
in ice.

The tunneling should occur primarily along the path
with the minimum energy barrier, but essentially infin-
ite degrees of freedom in hydrogenic motions prohibit us
from determining the path unambiguously. Only upper
bound of the minimum barrier height can be determined
in practice. First, we take a very simple mode of tunnel-
ing in which all hydrogens translate simultaneously along
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Fig. 1. Total energy curve with respect to the uniform
translation of hydrogens in the cubic ice. The r-axis desig-
nates the distance between a hydrogen and its nearest oxygen.
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Fig. 2. The energy contour when two hydrogens in one wa-
ter molecule move independently.
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Fig. 3. The 6H20 cluster studied here for the existence of
Berry’s phase.
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the bonds towards respective oxygen atoms forming
the hydrogen bonds (thus breaking the covalent bonds
between each pair of hydrogen and oxygen atoms). We
have performed ab initio pseudopotential calculations
to obtain the Born-Oppenheimer energy surface for the
translation. In order to reduce the computational load,
the cubic ice with two H2O molecules in the unit cell
is studied. The experimental cell volume is used and
only k = 0 point is considered for the Brillouin zone in-
tegration. The gradient-corrected local density approx-
imation 1s adopted since it is known to predict prop-
erties of the hydrogen bond correctly [16,1]. The func-
tional form of Becke [18] is used in exchange energy,
and that of Perdew [19] in correlation energy. This kind
of choice was tested in the paper of Ortiz et al. [20].
We have adopted the partial core correction [21] to the
oxygen atoms since the overlap between 1s and 2p elec-
trons in oxygen atoms is not small. The resulting Born-
Oppenheimer surface is plotted in Fig. 1. The line in the
figure is the quartically fitted polynomial, E(eV/H atom)
= —233—8.5(z —1.375)%+33.66(z — 1.375)* with z in the
atomic unit. From this curve the frequency of the collect-
ive oscillatory motion of hydrogens around minimum is
0.38 eV i.e., 3064 cm™! in wavenumber. This is in reas-
onable agreement with the experimental H—O stretching
mode in ice of 3220 cm~! [22]. The height of energy
barrier is 0.48 eV/H atom and when the zero point vi-
brational energy is taken into account, the actual barrier
is reduced to 0.28 eV/H atom.

Of course, this is not the minimum barrier path avail-
able. In order to illustrate this point, we let the two hy-
drogens in the same H20 molecule move independently.
The resulting 2-dimensional Born-Oppenheimer surface
is shown in Fig. 2. The z,, z, is the properly scaled co-
ordinates of the hydrogens so that the lower right or up-
per left corner corresponds to the equilibrium position,
and the central point corresponds to the configuration
where all the hydrogens are in the middle of oxygens.
The diagonal path (broken line) is the one calculated in
the above. The curved path (thick line) is the more op-
timized one where the barrier height is lowered about
0.05 eV/H atom. It is certain that as more degrees of
freedom are given the barrier will be lowered. We believe
that a similar calculation for a single hydrogen tunneling
[11] using the same method as ours gives a value close
to the minimum barrier height for the collective motion.
Unfortunately, the fully optimized relaxation of the envir-
onment and the precise collective tunneling made is far
beyond the computational capability at present. The true
zero-point-motion-corrected minimum barrier for the col-
lective tunneling is believed to be close to ~ 0.15 ¢V/H
atom in Ref. [11] and the mode we just calculated gives
a value (0.23 eV) not too far above this. In any case, the
barrier height is not insurmountably large, at least.

Now we want to face with the question of Berry’s phase.
We have proposed the existence of Berry’s phase to re-
solve the puzzle in relation with the degeneracy in the
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presence of quantum tunneling. The task here is to prove
the existence of a hydrogenic configuration at which the
electronic states are doubly degenerate. Since the degree
of freedom in crystalline ice is unmanageably high, we
rather choose a cluster made of eight H;O molecules for
simplicity. The structure of the cluster is shown in Fig.
3. The configuration of oxygen atoms in this figure is
identical to a part of the oxygen lattice in hexagonal ice.
In order to further simplify the analysis, we have con-
sidered only two degrees of freedom in hydrogenic motion
which are denoted by z1, z; in Fig. 3. The hydrogens at
the same height in the figure move in an identical way and
the symmetry group of the whole cluster is always pre-
served. The seven hydrogens extruding outward are fixed
relative to oxygens with the typical equilibrium O-H
length and the three basal hydrogens located between
oxygens at the bottom are fixed in the middle position
between oxygens. The relative coordinates z; and z, are
determined as

pyo 4O H) — 05 xdy. )
dg

where djy is the equilibrium O—O distance and d(O - - - H)
represents the distance of H from the lower O as indic-
ated in the figure. We have performed ab initio pseudopo-
tential calculations for the commonly used supercell geo-
metry in order to obtain the energy levels of the cluster.
The structure of the supercell containing the cluster is a
Eﬂmple cubic with lattice constants of 16 a.u. and only the
k = 0 point is considered in the Brillouin zone integra-
tion. In order to minimize the (undesirable) interactions
between the clusters, O—O’ axis in Fig. 3 is set to lie in
the (1,1,1) direction. In this case the minimum distance

Table 1. Band gap(eV) as a function of z; and z;. For
practical reasons, not all entries are calculated.

z1\z2 0.0 0.1 0.2 0.33
0.0 2.1 - - -
0.1 1.4 1.0 0.5 -
0.2 0.8 0.5 - -
0.33 0.5 - - -

Table 2. Total energy (eV) as a function of z; and z;. For
practical reasons, not all entries are calculated.

z1\z2 0.0 0.1 0.2 0.33
0.0 0.0 - - -
1.4 2.9 3.3 9.2 -
2.8 9.5 9.5 - -
4.5 102.0 - - -
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between hydrogens in different cells is 6.3 a.u., that
between oxygens 8.2 a.u., and that between hydrogen and
oxygen 6.8 a.u.. All these lengths are much greater than
typical bonding distances. This means that the overlap
between electrons in different cells is negligible, but the
electrostatic interaction between supercells may still be
substantial. For more quantitative confirmation, we have
compared the energy levels with those in a larger super-
cell with the lattice constant of 19 a.u. and noted that all
energy levels shift rigidly by the same amount. Since only
the differences between energy levels are relevant for the
present purpose, the remnant electrostatic interactions
between supercells do not pose a problem here.

The band gap and the total energy as a function of
zy, z2 are shown in Tables 1 and 2. The total energy is
measured with respect to £, = x5 = 0. The calculated
band gap in ice is about 4 eV. From the table, one can
see easily that as z; and z2 get closer to (.5 the gap be-
comes smaller. When the band gap becomes too small,
we could not obtain the converged result because single k
point scheme is insufficient for such a metal-like system.
However, there is no doubt that the gap will collapse to
zero at some z; and r2 and the degeneracy of electronic
states will follow. In addition, it can be inferred from the
table that the z coordinate of the collapsing point is a
function of z,, which implies that the singular (degener-
ate) points form a “string” in the 21, 23 plane.

Now we want to estimate the energy difference between
the ground state and the singular point. The purpose of
estimating this value is that the singular point should
be sufficiently high in energy so that the hydrogen con-
figuration corresponding to this singular point may not
actually be accessible. (This is in fact another necessary
condition for Berry’s phase to realize [8].) As stated pre-
viously, the calculated energy barrier in cubic ice is ~ 0.2
eV per H atom. The total energy difference (correspond-
ing to movements of six hydrogens) between the singular
point and the configuration where z; = z, = 0 is more
than 9 eV (or, 1.5 eV per hydrogen) in Table 2, at least.
Adding these two values, we obtain at least 1.7 eV/H
atom, which means the singular point is inaccessible and
the necessary condition for Berry’s phase is satisfied.

In the example of the defects or Naz molecules [14,15],

. . 1
the pseudo angular momentum is quantized as — due to

Berry’s phase and the ground state becomes doubly de-
generate like a spin-half system. Even though the pres-
ence of a singular point is not a sufficient condition for
Berry’s phase, we conjecture that a similar phenomenon
as in defects or Naz molecules would occur in this struc-
tural part of crystalline ice and eventually gives rise to
finite residual entropy for the bulk ice.

In summary, we have shown that the residual entropy of
ice may be interpreted as a realization of the fractional ex-
clusion statistics in three spatial dimensions. The exper-
imental observation of the residual entropy suggests that
a macroscopic number of degenerate configurations may
actually be accessible even at low temperatures through
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quantum tunneling. Occurrence of quantum tunneling,
however, normally causes an appreciable energy level
splitting which would in turn make the residual entropy
vanish, leaving us in a paradoxical situation. We propose
that the emergence of Berry’s phase through the topolo-
gically nontrivial, collective tunneling of hydrogen atoms
can resolve this puzzle and explain the finite residual en-
tropy. To support this proposal, we have performed ab
initio pseudopotential calculations on the cluster of eight
water molecules resembling the structure of the hexagonal
ice and found that electronic ground states can become
degenerate for a certain hydrogenic configuration. We
conclude that the topological excitation may be an essen-
tial feature of the fractional exclusion statistics even in
the case of ice where the chemical constraint is the source
of such exclusion.

This work was supported by the BSRI of the Min-
istry of Education and the Korea Science and Engineering
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