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In a previous work [Phys. Rev. B 84, 085120 (2011)], we presented the orbital-separation approach for
simulating metal/insulator/metal capacitors under bias voltage within the Kohn-Sham framework of density
functional theory. A limitation mentioned in that work was that it is not straightforward to calculate the amount
of free charge transferred from one electrode to the other, and thus the application of the method was limited to
the closed-circuit (constant-voltage) condition. Here, we show that it is actually possible in practice to calculate
the free charge by examining the change in the occupation of the Kohn-Sham eigenstates near the Fermi level.
Thus it is also possible to perform open-circuit (constant-charge) simulations, and we demonstrate this on a
metal/ferroelectric/metal capacitor.
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I. INTRODUCTION

The understanding and optimization of interface and
surface properties of materials is imperative for further
development of microelectronic devices, which have become
an indispensable and integral part of modern-day society. The
same applies to catalysis in electrochemical energy conversion
and storage, whose importance is ever-increasing as we try
to exploit renewable energy resources towards realizing a
sustainable society.

To understand the properties and functions of inter-
faces/surfaces and to obtain materials design principles, first-
principles simulation based on the Kohn-Sham (KS) formalism
of density functional theory (DFT) [1,2] has been gaining
popularity as a go-to method. Although the original KS
formalism was limited to simulation of the electronic ground
state, recent advances in simulation methodologies have made
possible the simulation of nano structures under electrical bias,
which is essential for probing the performance of nanode-
vices under operating conditions [3–12]. In this context, we
previously proposed the orbital-separation approach (OSA),
which is applicable to metal/insulator/metal capacitors of
arbitrary geometries as long as there is negligible electronic
current between the electrodes [13]. The method is based on
the separation of Kohn-Sham eigenstates with energies near
the Fermi level into each of the metal electrode parts, then
occupying them according to the Fermi levels assigned to each
of the electrodes. The Fermi levels are determined so that the
system satisfies charge neutrality while maintaining a preset
Fermi level difference (i.e., voltage between electrodes). The
accuracy of the approach was also evaluated, and it was found
that the OSA gives consistent quantities with that derived
from density functional perturbation theory calculations of the
dielectric constant in bulk systems; this suggests that errors
would originate not from the approach itself, but from the
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limitations of the functional approximations used in the KS
procedure and insufficient convergence in the self-consistent
field calculations. The main merits of this approach are its
applicability to arbitrary electrode geometries and freedom of
choice in the basis set expansion of the wave functions, as
well as simplicity of implementation; a somewhat thorough
discussion on the strengths and weaknesses of this approach
in comparison with other finite-bias methods has been given
in Ref. [13]. Although this made possible closed-circuit,
constant-voltage simulations of metal/insulator/metal capac-
itors, we were unable to calculate the free charge transferred
from electrode to electrode. One may first think that the free
charge can be calculated from electron density differences, but
this is actually not the case, as it is nontrivial to separate out
the polarization charge from the free charge.

Calculation of the free charge is desirable for several
reasons. One of them is that the variational quantity during
a constant-voltage simulation is the grand potential that may
be calculated as

� = EKS − V Q, (1)

where EKS is the Kohn-Sham total energy of the capacitor,
V is the applied bias voltage, and Q is the free charge
that is transferred from one electrode to the other due to
the applied bias. Without knowledge of the free charge Q,
it is not possible to calculate this quantity. This makes
energy-based optimization methods for structural relaxation
unusable, and we would also lack access to a conserved
quantity for evaluation of the accuracy of molecular dynamics
simulations (it should be noted, however, that the forces can
be obtained without knowledge of the grand potential as
shown in Ref. [13]). Another reason is that the ability to
evaluate the free charge would make possible open-circuit
(constant-charge) simulations, which is particularly useful for
examining ferroelectric materials as pointed out in Ref. [14].

In this work, we show that we can actually calculate the free
charge by comparing the occupation of the KS eigenstates near
the Fermi level before and after bias application. Based on this

1098-0121/2015/92(11)/115124(6) 115124-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.085120
http://dx.doi.org/10.1103/PhysRevB.84.085120
http://dx.doi.org/10.1103/PhysRevB.84.085120
http://dx.doi.org/10.1103/PhysRevB.84.085120
http://dx.doi.org/10.1103/PhysRevB.92.115124


SHUSUKE KASAMATSU, SATOSHI WATANABE, AND SEUNGWU HAN PHYSICAL REVIEW B 92, 115124 (2015)

idea, we implement a constant-charge version of the OSA and
test its use on a ferroelectric capacitor.

II. ORBITAL-SEPARATION APPROACH

We start with a short review of the orbital-separation
approach (OSA) of Ref. [13]. In the conventional self-
consistent-field (SCF) KS-DFT scheme, the charge density
is constructed in each SCF step from the lowest-energy KS
orbitals:

ρ(r) =
∑

k

∑
i

wkfσ (εi,k − εF)|ψi,k(r)|2. (2)

Here, i is the band index, k stands for the k points used in
the Brillouin zone integration, wk is the k-point weight, fσ is
the function used for smearing of the occupation numbers
for faster convergence, ψi,k is the KS orbital, εi,k is the
eigenenergy of the KS orbital, and εF is the Fermi level which
is determined from charge conservation∫

unit cell
ρ(r)dr = N, (3)

where N is the number of electrons in the unit cell. In the OSA,
this occupation scheme is modified to simulate the effect of
bias voltage. The basic idea stems from the fact that in a system
consisting of metallic parts well separated by insulating parts,
the KS orbitals near the Fermi level can be separated out into
each of the metallic (electrode) parts because there are no
eigenstates within the band gap of insulators. The separation
can be performed in each SCF step by examining the spatial
distribution of each KS orbital within a preset energy window
around the Fermi level εF determined from Eqs. (2) and (3).
Once the separation is done, the occupation functions can be
given as

fi,k =

⎧⎪⎨
⎪⎩

1, εi,k < εlower
win ,

0, εi,k > ε
upper
win ,

fσ (εi,k − εF,α(i,k)), εlower
win � εi,k � ε

upper
win ,

(4)

where εlower
win and ε

upper
win are the lower and upper bounds of the

energy window, and α(i,k) specifies the electrode to which the
KS orbital ψi,k belongs. The Fermi levels in each electrode

εF,α are determined so as to maintain total charge neutrality∫
ρ(r)dr =

∫
dr

∑
k,i

wkfσ (εi,k − εF,α(i,k))|ψi,k(r)|2 = N,

(5)

while maintaining specified bias voltages with respect to one
reference electrode in the system:

εF,1 − εF,0 = eV1

εF,2 − εF,0 = eV2

...

εF,αmax − εF,0 = eVαmax .

(6)

The SCF loops are carried out in exactly the same way
as in the conventional KS-DFT methods with the above
occupation scheme. Notice that we have specified the bias
voltage, but there is no way to calculate the accumulated charge
from the above discussion. We also have no way to fix the
charge on the electrodes, which means that we can carry out
closed-circuit simulations, but not open-circuit ones. As noted
in the Introduction, these problems can be addressed through
the examination of the KS orbitals, which will be presented in
the following sections.

III. CALCULATION OF THE FREE CHARGE

To compare occupation of KS orbitals as suggested in the
Introduction, we need to be able to identify which orbitals
correspond to each other between calculations at different bias
voltages and/or polarizations. It is not at all trivial to perform
this identification automatically, and we propose the following
procedure.

First, we perform a calculation of the capacitor structure
that serves as the reference (i.e., the zero point) for the
free charge. For example, we may take the zero-bias relaxed
capacitor structure as the reference state. The KS orbitals
near the Fermi level are separated into each of the electrodes
based on their spatial distribution [13], and their energies and
occupation are tabulated and saved in an output file. Next, we
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FIG. 1. Schematic of the possible ways to connect orbitals between calculations at different biases for (a) �n = 0, (b) �n = 1, and
(c) �n = 2. The dashed rectangles represent the bias window near the Fermi level in the OSA calculations. Assuming a rigid shift of the orbital
energies, (b) gives the correct connection between corresponding orbitals.
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FIG. 2. (Color online) Au/MgO/Au capacitor model examined in this work. The rectangle represents the calculation cell size.

perform a calculation (which may include structural relaxation
or molecular dynamics under bias) using OSA and tabulate
the eigenenergies and occupations again. To connect each
KS orbital to the reference eigenstate, we use the approach
schematically depicted in Fig. 1: the eigenenergies within
a preset window in the left electrode at each k point is
numbered from lowest energy to highest as εL

1,k · · · εL
nL,k, and

those in the reference calculation is numbered similarly as
εL0

1,k · · · εL0
nL0,k. The possible ways to connect the reference

and current eigenstates can be characterized by an integer
offset value �n, so that the nth eigenstate with energy εL

n,k is
connected to the reference (n + �n)th eigenstate with energy
εL0
n+�n,k. The eigenenergies are expected to shift by a constant

as long as the amount of the free charge is small enough so
that nothing drastic occurs (such as a chemical reaction at
the interface) to alter the band structure of the electrodes.
Thus the correct �n should satisfy εL

1,k − εL0
1+�n,k � · · · �

εL
m,k − εL0

m+�n,k � · · · � �VL with �VL being the shift in
the electrostatic potential in the left electrode. Therefore, the
correct value of �n is expected to minimize

max
n

(
εL
n,k − εL0

n+�n,k

) − min
n

(
εL
n,k − εL0

n+�n,k

)
, (7)
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FIG. 3. Eigenenergies of the KS orbitals in the left electrode of the
Au/MgO/Au model near the Fermi level plotted against the applied
bias. The energies of the orbitals at the k-point (5/12,1/12) · (ga,gb)
are presented. In (a), the values are referred to the average potential
in the calculation cell (the usual output of plane wave KS-DFT
calculations under periodic boundary condition), while in (b), the
values are referred to the Fermi level position in the left electrode
at each bias voltage. The inset is an enlarged view of the highest
(partially) occupied orbital. The dashed lines are linear fits to the
data.

where we consider n values only when both εL
n,k and εL0

n+�n,k
lie within the preset bias window for the current and reference
calculations, respectively. This is the criteria that we currently
adopt for obtaining �n, although we note that this approach
is not completely foolproof; ultimately, it is recommended
to make sure that the actual connections determined by the
proposed algorithm are reasonable ones. Once the correspon-
dence with the reference eigenstates is made, the free charge
is calculated as

�Q =
∑
n,k

wk�qn,k, (8)

where �qn,k is the change in the occupation of the eigenstates
near the Fermi level and wk is the k-point weights in the
Brillouin zone integration.

IV. TEST ON Au/MgO/Au CAPACITOR

We implemented the OSA in Vienna ab initio Simulation
Package (VASP) [15,16] and performed finite-bias calculations
on the Au (100)/MgO (100)/Au (100) capacitor model shown
in Fig. 2. We chose the local density approximation to
the exchange-correlation functional, and used the projector-
augmented wave method for representing electron-ion interac-
tions. A 6 × 6 × 1 Monkhorst-Pack k-point grid was used for
the calculations. Gaussian smearing of the electron occupation
with a smearing width of 0.05 eV is used to speed up the
convergence. The dipole correction [4] as implemented in VASP

was used to cancel the interaction between adjacent unit cells.
First, we examined the change in the KS orbital eigenen-

ergies under applied bias. Figure 3(a) shows the KS or-
bital eigenenergies near the Fermi level at the k point
(5/12,1/12)·(ga,gb) at zero bias and when positive biases
of 0.1, 0.2, and 0.3 V are applied to the right electrode (ga

and gb are reciprocal lattice vectors on the xy plane). The
eigenenergies shift more or less by a fixed amount, meaning
that the energy band structure changes very little in the
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FIG. 4. Amount of free charge accumulated on the capacitor
plates (a) and the increase in the energy (b) of the Au/MgO/Au
capacitor due to applied bias. The dashed lines are linear fit and
parabolic fit to the data for (a) and (b), respectively.
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FIG. 5. Capacitance of the Au/MgO/Au capacitor evaluated from
the calculated charge-voltage relation (circles) and the energy-voltage
relation (triangles).

bias range examined. This shows that the assumption of the
previous section is satisfied.

Figure 3(b) shows the same data as Fig. 3(a) but measured
from the Fermi level in the left electrode at each of the applied
biases. Very little bias dependence is observed in this plot,
meaning that the Fermi level position moves only slightly with
respect to the band structure (although they indeed do move
as shown in the inset) due to the large density of states in the
metal electrode. Thus only the KS orbitals closest to the Fermi
level show changes in occupation; those higher in energy have
zero occupancy, and those lower in energy are fully occupied
regardless of the applied bias. Therefore, one can simply
examine the change in the occupancy of KS orbitals within
a preset window near the Fermi level in order to calculate the
accumulated free charge. The window must be large enough
to cover the region of KS eigenenergies where occupancies
change between the reference and finite-bias calculations.

Figure 4(a) shows the free charge calculated using the above
scheme after relaxation at 0.1, 0.2, and 0.3 V. As expected for a
normal capacitor, the free charge is proportional to the applied
bias voltage. The total energy shown in Fig. 4(b) shows a
parabolic dependence on the bias voltage, which is also the
expected behavior. As a simple sanity test, we compared the
differential capacitance calculated from the charge vs bias C =
dQ/dV and energy vs bias C = 1/V dEKS/dV (see Ref. [13]
for derivation). As shown in Fig. 5, the differences in results
are within 2% of the obtained capacitance values, attesting to
the soundness of the procedure outlined here.

V. CONSTANT-CHARGE CALCULATION:
ZERO-POLARIZATION STATE OF SrRuO3/BaTiO3/SrRuO3

CAPACITOR

Since we are now able to calculate the free charge with
respect to a reference calculation of a metal-insulator-metal
capacitor, it is relatively straightforward to implement a
constant-charge method. That is, at each self-consistent field
(SCF) step in the KS-DFT-based OSA calculation, we solve
for the bias voltage V between the electrodes that results in
the preset free charge �Q vs the reference system. We note
that the scheme would fail if the states near the Fermi level
change too much between SCF steps, so the constant-charge
calculations are started by reusing the KS wave functions and
electron density of the reference state. A small enough �Q

value and careful mixing of the electron density between SCF
steps was found to be necessary to obtain stable convergence
to the ground state at constant free charge.

To test our constant-charge implementation in VASP,
we performed calculations on the SrRuO3/BaTiO3/SrRuO3

(SRO/BTO/SRO) model shown in Fig. 6. The BTO slab
is thicker than the critical thickness for monodomain ferro-
electricity [17] so there is nonzero spontaneous polarization.
We performed structural relaxation of this capacitor structure
while fixing the free charge, which corresponds to fixing the
electric displacement D [14]. This allows the examination
of the region of D which is thermodynamically unstable
at constant bias voltage, such as a ferroelectric near zero
polarization. We stress that such calculations are not possible
in the original orbital-separation approach of Ref. [13], which
could only fix the voltage but not the electric displacement.
Although such zero-polarization states are not accessible in
usual experiments where voltage is regulated, the calculations
are very useful for examining the strength of the ferroelectric
instability [14]. Furthermore, a recent experimental report
claims that information from this region can be extracted from
the transient current and voltage during polarization switching
[18].

We started from the zero-bias left-polarized structure shown
in Fig. 6 and performed relaxation at decreasing free charge
�Q values (electrons were removed from the left electrode
and added to the right) until the zero-polarization centrosym-
metric BTO structure was reached. Figure 7(a) shows the z

displacement of the Ba ions vs the O ions in the central BaO
layer [Fig. 6(b)]. We find that the zero-polarization state is
reached when ∼0.265 electrons per unit cell is transferred
from the left electrode to the right electrode. The voltage vs

(a) (b)

Sr BaRu TiO

x

y z

FIG. 6. (Color online) (a) Calculation cell of the SRO/BTO/SRO capacitor model examined in this work and (b) an expanded view of the
region surrounded by the dashed rectangle. The BTO slab shows spontaneous polarization towards the left (cations in each layer are displaced
to the left, while anions are displaced to the right).
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FIG. 7. (a) Cation-anion displacement δBa-O, (b) voltage V , and
(c) the total energy �E of the SRO/BTO/SRO capacitor after
relaxation at fixed charge �Q. Note that �Q = 0 corresponds to
the situation where the BTO slab is spontaneously polarized towards
the left as in Fig. 6(b).

free charge [Fig. 7(b)] shows the S-shape nonlinearity and
the energy vs free charge [Fig. 7(c)] shows the double-well
structure characteristic of ferroelectric materials. Moreover,
the maximum in the energy, zero polarization, and zero voltage
all coincide at the same �Q value of ∼−0.265e/unit cell,
which is the expected behavior attesting to the reliability and
accuracy of our scheme. Additionally, we calculated the local
inverse permittivity profile at zero polarization (Fig. 8) by
calculating dĒ(z)/dD, where Ē is the xy-plane-averaged and
nanosmoothed electrostatic field in the direction perpendicular
to the interface, and D = Q/A is the electric displacement
(which is equal to the free charge density). The nanosmoothing
has been performed using convolution by a Gaussian kernel
[19]. A decrease in the local permittivity is seen at the interface
of SRO and BTO (the so-called dead layer effect), and the
inverse permittivity converges to the value of −0.022 in the
middle of the BTO slab in good agreement with a previous
work using maximally localized Wannier functions (MLWFs)
to perform fixed-D simulations [20]. We note, in passing, that
although the OSA gives virtually identical results with the
MLWF approach for parallel-plate capacitors, we may just as
easily employ the OSA to treat non-parallel-plate capacitor
geometries. Doing the same in the MLWF approach gives rise
to complications otherwise absent in the parallel-plate case.
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FIG. 8. Inverse permittivity profile of the SRO/BTO/SRO capac-
itor at the zero-polarization state. The dashed vertical lines indicate
the interfacial SrO layers.

This is due to the fact that although one-shot Wannierization
is possible in one dimension, the same is not possible in
two or more dimensions; iterative minimization of the spread
functional as well as specification of sensible initial guesses
are required in those cases, requiring user interaction in the
simulation process [11].

VI. CONCLUSION

In this work, we extended the orbital-separation approach
(OSA) to calculate the free charge accumulated on a capacitor
under finite bias. Using the calculated free charge and the
energy of the capacitor, we can calculate the grand potential
of the system from Eq. (1). This means that it is now possible
to evaluate the stability of electrochemical interfaces under
bias from the energetics obtained from first principles by
using the OSA. Furthermore, we developed a constant-charge
version of OSA and tested its use on the thermodynamically
unstable zero-polarization state of a ferroelectric capacitor. We
confirmed the reliability and robustness of the method through
the examination of the relationship between the polarization,
voltage, and the ferroelectric double-well energy structure.
Summarizing the above, the applicability of the OSA has
been extended to include both open-circuit and closed-circuit
situations in experiments and device operation. The OSA now
provides access to forces acting on ions as well as the grand
potential that allows for examination of the thermodynamics
of metal/insulator/metal systems of arbitrary geometry under
finite bias as long as there is negligible current flowing between
electrodes. This would further facilitate the simulation of
novel devices in complex geometries, e.g., switching and/or
memory devices utilizing multiferroic materials with multiple
electrodes.
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