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ABSTRACT: In fuel cell applications, the durability of catalysts is
critical for large-scale industrial implementation. However, limited
synthesis controllability and spectroscopic resolution impede a
comprehensive understanding of degradation mechanisms at the
atomic level. In this study, we develop a machine-learned potential
(MLP) to simulate the degradation processes for Pt3Co nano-
particles. The precision of MLP is determined to be comparable to
that of density functional theory calculations. Using off-lattice
kinetic Monte Carlo simulations with MLP, we successfully
replicate established experimental trends and offer a logical
resolution to ongoing debates regarding atomic orderings. Based
on the simulation results, we suggest design principles for Pt3Co
nanoparticles that combine high activity and durability. Finally, we
validate the wide applicability of our method by successfully applying it to Pt3Ni and Pt3Co0.5Ni0.5 nanoparticles. Our research serves
as a guideline for developing MLPs for alloy electrochemical catalysts and lays the foundation for designing more durable and active
fuel-cell catalysts.
KEYWORDS: off-lattice kinetic Monte Carlo simulation, machine-learned potential, fuel cell, Pt alloy nanoparticle, durability

■ INTRODUCTION
One of the main challenges in the wide implementation of fuel
cells is the high activation barrier required for the oxygen
reduction reaction (ORR) at the cathode, resulting from the
strong double bonds in oxygen molecules.1 To address this
issue, considerable efforts are currently underway to discover
an efficient catalyst capable of lowering the barrier.2 Pt stands
out as the most recognized catalyst due to its exceptional
performance.3 However, its high cost impedes a wide
implementation.4 As such, the focus in the practical use of
the fuel cell is primarily on reducing Pt amounts in catalyst
materials.
A promising strategy to reduce the Pt loading involves

alloying Pt nanoparticles with 3d transition metals such as Co,
Ni, and Fe,5 which also amplifies the catalytic activities,
thereby fulfilling the standards established by the U.S.
Department of Energy.6 On the other hand, the inclusion of
3d transition metals often compromises durability.7 Numerous
studies have been conducted to identify the major factors
affecting durability, focusing on the influence of micro-
structures such as size,8 shape,9,10 and atomic ordering.11−13

However, it is challenging to establish a detailed atomistic
understanding of the degradation mechanism solely through

experiments due to the limitations in synthesis controllability
and resolution of analytic tools.14 For instance, the relative
stability between ordered and disordered phases of Pt-based
alloy nanoparticles is still under debate: ref 15 reports that
disordered Pt−Co nanoparticles exhibit higher durability than
the ordered ones, while contradictory findings are presented in
ref 16. This contradiction may originate from the fact that the
control of atomic ordering often accompanies the change of
particle size,17 which complicates the task of quantifying the
individual contribution of each factor.
Theoretical methods have provided atomistic insights into

the degradation of the ORR catalysts. In particular, density
functional theory (DFT) calculations have been used to
explore the dissolution potential of nanoparticles across diverse
structures.18−21 However, due to their large computational
cost, these studies employed rather simplified nanoparticle
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models: using small nanoparticle sizes,18 symmetrizing nano-
particle shapes,21 or assuming layer-by-layer dissolution.19,20

To overcome this limitation, kinetic Monte Carlo (kMC)
simulations have been coupled with efficient energy calculators
such as simple parameterized models,22 empirical force fields,23

or cluster expansion method.24−26 These studies, however,
restricted atomic positions to fixed lattice sites (known as on-
lattice models) during kMC simulations owing to the limited
adaptability of empirical models in describing diverse atomic
structures. Consequently, the derived structures displayed
jagged rather than smooth shapes typically observed
experimentally.27,28 To enable simulations beyond an on-
lattice model, an interatomic potential is required to be capable
of accurately evaluating the potential energy surface for
complex geometries that emerge during off-lattice simulations.
Machine-learned potentials (MLPs) have recently gained

attention due to their low computational cost, flexible
applicability over diverse structures, and accuracy comparable
to DFT calculations,29 which find immediate applications in
various domains like crystal structure prediction,30,31 phase
change materials,32 nanocrystals,33 and catalysts.34,35 MLPs
have also been utilized to examine the stability of Pt-alloy
nanoparticle catalysts: in ref 36, an MLP was used to identify
the optimal atomic distribution of Pt−Cu−Ni alloy nano-
particles using Monte Carlo (MC) and molecular dynamics
(MD) simulations. However, the stability of nanoparticles was
assessed only on defect-free models without considering the
defective and distorted surfaces of realistic nanoparticles.
In this study, we develop an MLP to simulate the

degradation process, encompassing dissolution and vacancy
migration, in Pt3Co nanoparticles known for their high stability
and activity.37 The developed MLP is validated to accurately
emulate the energetics associated with vacancy formation and
migration across various compositions and shapes of nano-
particles. Dissolution trends of realistic-size nanoparticles (up
to 4 nm) are analyzed through off-lattice kMC simulations,
with the MLP evaluating the energies and activation barriers of
intermediate structures. We investigate the effects of size,
shape, and atomic ordering on durability and provide design
principles for achieving both high durability and activity.
Finally, we demonstrate that the developed method can be
successfully applied to other alloy systems, such as Pt3Ni and
Pt3Co0.5Ni0.5.

■ COMPUTATIONAL DETAILS
Machine-Learned Potential. We adopt Behler−Parrinel-

lo-type neural network potential (NNP)38 with input features
encoded by an atom-centered symmetry function.39 The
feature generation and training of the NNP are conducted
using the SIMPLE-NN package.40 To achieve the balance
between computational cost and accuracy, the parameters of
symmetry function vectors are chosen by CUR decomposi-
tion.41 This method finds low-rank approximation A( ) of the
original feature matrix (A) as follows

=A A CUR (1)

where U denotes the mixing matrix, and C and R are rows and
columns of the original feature matrix, respectively. The
component numbers of the symmetry function vectors for both
Pt and Co are 32. The cutoff radius for calculating the
symmetry function is set to 6 Å. The reference data is split into
training and validation data sets with a ratio of 9:1. The
energies, forces, and stresses of reference structures are

computed through DFT calculations employing the VASP
code,42 with PBE exchange−correlation functional.43 A cutoff
energy of 300 eV is chosen for the plane-wave basis set, and a
k-point spacing of 0.4 Å−1 is chosen. These settings ensure
convergence criteria of 10 meV/atom and 0.1 eV/Å for energy
and force, respectively. For structures involving Co atoms,
spin-polarized calculations are performed by assuming
ferromagnetic spin configurations. We exclude the solvation
effect after confirming its negligible impact on the surface
energy and the vacancy formation energy (see Table S1 and
Figure S1). For slab and cluster configurations, a vacuum layer
of at least 8 Å is added. NVT MD simulations are conducted
for 3 ps at 600 K by DFT calculations, with a time step of 2 fs.
Off-Lattice Kinetic Monte Carlo Simulation. We

employ off-lattice kMC methods to simulate the realistic
degradation process of nanoparticles. In the kMC simulation, a
system evolves to the next local minima by selecting an event
based on the probability proportional to the reaction rate (ki),
which is given by

=
i
k
jjjjj

y
{
zzzzzk

E

k T
expi i

a i,

B (2)

where νi and Ea,i indicate the attempt frequency and activation
energy of the I-th event, respectively, and kB and T are the
Boltzmann constant and temperature, respectively. The event
table consists of (1) surface vacancy formation and (2) vacancy
migration for the emulation of the atomic dissolution and
rearrangement, respectively. We neglect the redeposition of
dissolved atoms, as its reaction rate is considerably lower
compared to these reactions.28

For modeling dissolution processes, we obtain the activation
barrier from Brø̈nsted−Evans−Polanyi (BEP) relation44 using
surface vacancy formation energy, instead of directly
calculating the activation energy of the dissolution trajectory.
Note that explicit dissolution simulations are challenging due
to the large degree of freedom and the alteration in work
function during the electrochemical process,45 while there are
ongoing developments in this field.46−49 The parameters for
the BEP relation are extracted from literature, where they were
determined through fitting to replicate the experimental
results50−52 (see Figure S2 for sensitivity test). Note that
realistic factors such as the electrolyte effect and the influences
from the oxygenated species are not considered in this work.
Even so, the fitting process of the BEP parameters would
implicitly reflect such factors.
For diffusion events, an initial state and a final state are

defined by employing a simple grid-based search with single-
atom hopping rather than exhaustive approaches such as the
dimer method53 or the kinetic activation-relaxation techni-
que.54 The activation energies for diffusion reactions are
calculated on the fly by the nudged elastic band (NEB)
method.55 The search methods are described as follows (see
Figure 1a): first, we generate a spherical surface grid using a
Fibonacci lattice56 (refer to Figure S3) with a point density of
3.65 Å−2, centered around the target atom. The radius of the
grid is set at 2.8 Å, which is approximately equal to the average
bond length. Next, the grid points that are too close to
neighboring atoms (<2.2 Å) or have a low coordination
number (≤4) are filtered out from the candidates. Note that
the threshold of 2.2 Å is determined by the radial distribution
function of disordered Pt−Co alloy (see Figure S4) and the
threshold for coordination number, set at 4, is selected after
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the structural relaxation test (see Figure S5). The remaining
grid points within the same local basin are merged into one
activation site. Two grid points are considered to be in the
same local basin if the angle between their vectors, extending
from the origin to each grid point, is less than 30°. The choice
of 30° angle threshold is inspired by ref 57 which suggested the
angle threshold as half of the minimum angle between the
configuration vectors of unique transition states. Similarly, we
take half of the smallest angle between the two nearest
neighbors in an FCC lattice, which is 60°. Lastly, structural
optimization is performed for each candidate configuration to
check whether the target atom returns to the initial state.
Figure 1b shows an example of diffusion events: it is shown
that the search algorithm successfully finds the local basin,
even in the case in which it deviates from a simple on-lattice
site. The calculation results are accumulated in the database
and reused when the same event occurs. Note that two events
are defined as identical if the sets of the coordinates of
neighboring atoms (within 6 Å) around the target atoms are
identical (within tolerance criteria of 1 Å). Although
distinguishing between two events using this definition is
permutationally and rotationally variant, it remains effective as
identical events predominantly occur in sequential simulation
steps. In order to prevent the system from being trapped
within a superbasin with minimal time evolution, the rate of a
specific event is reduced by a factor of 2 every time it is
consecutively sampled nine times, which ensures the escape
probability from a superbasin remains within a 20% error
margin.58

The values and calculation methods for the attempt
frequency and barrier energy are summarized in Table 1.
While attempt frequency for dissolution events is taken from
ref 59 as 104 Hz, one for diffusion events is chosen to be 106
Hz in this study. The attempt frequency for diffusion events is
far smaller than the Debye frequency of 1 × 1013 Hz, which is
widely used in a solid system. However, with such high
frequency, the kMC simulation would spend most of the time

on the vacancy hopping near the equilibrium state with little
time evolution. To reduce the attempt frequency, we conduct a
convergence test as shown in Figure S6 and find that the
temporal behavior of dissolution rates becomes similar when
the attempt frequency is above 106 Hz. Thus, we choose this
value as the attempt frequency for vacancy migration.
The initial structures of the kMC simulations are

constructed through atom-swapping Monte Carlo (MC)
simulations to build thermodynamically plausible structures.
The MC simulation begins with Pt3Co random configurations,
exchanging atomic positions with their first nearest neighbors
based on the Metropolis criterion.60 The MC simulations are
terminated when the surface Pt ratio becomes about 90%
following the experimental measurements (typically, 85−
100%).61−64 We find that the surface Pt ratio of the initial
structures has a considerable impact on the dissolution rate of
nanoparticles. Even so, we check that the change in the surface
Pt ratio does not alter the overall trends regarding the relative
stability among various nanoparticles and thus does not affect
the main conclusions of this study.
All the above procedures, including MC and kMC, are

conducted by in-house code, MINK (Machine learning
INteratomic potential with Kinetic Monte Carlo) coupled
with the LAMMPS package.65 All kMC simulations are
repeated 5 times to analyze the statistical variance. Further
details of the kMC simulations are described in the Supporting
Information.

■ RESULTS AND DISCUSSION
Training and Validation of Machine-Learned Poten-

tial. We develop a Behler−Parrinello-type NNP for Pt−Co
alloy nanoparticles trained on the reference structures obtained
from DFT calculations. Figure 2 illustrates the simulation
model for Pt3Co alloy nanoparticles, along with the structures
included in the training set used for constructing the NNP.
The Pt3Co nanoparticle structure consists of four distinct
parts: bulk, surface, edge, and corner. During degradation
processes, these structures undergo applied strain and the
formation of various vacancy configurations. To account for
these variations, the training set encompasses (1) strained bulk
crystals, (2) MD trajectories at 600 K, (3) NEB trajectories for
vacancy migrations, and (4) the relaxation trajectories of
multivacancies in bulk, slab, and cluster structures across the
compositions of Pt1−xCox (x = 0, 0.1, 0.2, 0.3, 0.4). The
clusters are created from cutting nanoparticles (truncated
octahedrons, icosahedrons, cuboctahedrons, and octahedrons)
with a cutoff radius of 12 Å centered around the selected vertex
atoms.66 To enhance the electronic convergence of DFT
calculations, atoms with coordination numbers of less than six
are removed. In order to efficiently sample diverse defect
configurations, we ensure that the training structures in the
same category (see Table S2) do not contain the same local
environments of vacancies, which are defined by the
composition of the nearest-neighbor atoms. (We confirm

Figure 1. Diffusion process for kMC simulations. (a) Schematic
representation of the path-searching algorithm. The red atoms stand
for the target atom, and the black dots represent the spherical grid
points for trial hopping. The yellow spheres represent the candidates
for hopping sites. Then, structural relaxation is done to obtain the
final structures. (b) Example of initial, activation, and final states for
the diffusion process.

Table 1. Attempt Frequency Values and Methods for
Calculating the Barrier Energy for Each Eventb

event attempt frequency (constant) barrier energy (on the fly)

dissolution 104 Hza BEP relation
diffusion 106 Hz NEB method

aFrom ref 59. bWhether the values are constant or calculated on the
fly is written in parentheses.
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that when the nearest-neighbor configurations are fixed, there
is only about a 0.1 eV variation in the vacancy formation
energies; see Figure S7.). To check whether this approach
rather results in under-sampling configurations that frequently
emerge, we examine the uncertainty values67 for the structures
that emerge during the kMC simulation (see Figure S8) and
confirm that the uncertainty values remain relatively low across
all energy ranges. In total, we sampled 4576 configurations
comprising 514,449 local atomic environments (see Table S3).
The trained NNP exhibits root-mean-square errors

(RMSEs) of 4.46 meV/atom, 0.13 eV/Å, and 6.72 kbar for
energy, force, and stress, respectively, for the validation set
(Figure S9). The RMSE values for the training set fall within a
similar range, indicating the absence of overfitting. To assess
the coverage of NNP over the compositions of Pt1−xCox (0 ≤ x

≤ 0.5), we evaluate its accuracy for random bulk configurations
and intermetallic compounds (PtCo, Pt3Co, and Pt), as shown
in Figure 3a. The results demonstrate that the NNP accurately
predicts energy values in reasonable agreement with the DFT
across the relevant compositions. Furthermore, we test the
accuracy of the NNP in predicting surface vacancy formation
energies (Figure 3b) and migration barriers (Figure 3c) for the
atoms in the surface or subsurface on randomly generated slab
structures for (100) and (111) planes at a Pt3Co composition.
The NNP shows good accuracy for both vacancy formation
energies (R2 of 0.938 and RMSE of 0.136 eV) and migration
barriers (R2 of 0.847 and RMSE of 0.227 eV) compared to
DFT references. Note that the modified embedded atom
method (MEAM) potential68 exhibits significantly larger errors
(0.381 and 0.835 eV for vacancy formation and migration
barriers, respectively, as shown in Figure S10).
Figure 3d displays the test results for the accuracy of the

NNP compared to DFT on nanoparticles of different sizes and
shapes. It can be seen that the error diminishes with an
increasing radius. Specifically, nanoparticles with a diameter
less than 0.9 nm exhibit a relatively large error, exceeding 0.25
eV/atom. To check if this trend stems from significant errors in
undercoordinated atoms (e.g., edges and vertices) due to
insufficient sampling, we estimate the uncertainties using a
neural network ensemble (see Figure S11).67 Except for the
nanoparticles smaller than 0.9 nm, the uncertainties of both
under-coordinated and bulk atoms remain within the threshold
range established by the training set. This suggests that the
errors are not centered on undercoordinated atoms. The large
errors in small nanoparticles might be attributed to the
presence of highly strained atoms, which are not explicitly
included in the training set. In fact, as shown in Figure S12, we
observe that a large portion of small nanoparticles have high
uncertainty values. However, this error diminishes significantly
when the diameter exceeds 1 nm, the size of interest in this
study.

Figure 2. Schematic description of the simulation model and training
configurations for the Pt3Co nanoparticles. The gray, blue, and orange
atoms stand for Pt, Co, and vacant sites, respectively.

Figure 3. Performance test to evaluate the accuracy of NNP. (a) Energy comparison between NNP and DFT for random Pt1−xCox (0 ≤ x ≤ 0.5)
bulk configurations and intermetallic compounds. Correlation between DFT and NNP energies for (b) vacancy formation and (c) vacancy
migration barrier on (100) and (111) surfaces. (d) NNP errors depending on the size of the nanoparticle. (e) Time evolution of NNP and DFT
energies for the configurations obtained from kMC simulation with NNP for truncated octahedron Pt3Co nanoparticle with an applied voltage of
0.8 VSHE at 350 K. The simulation is performed for 588 steps (10% loss of total atom), and then DFT energies are evaluated on the snapshots
selected every 10 steps after the structure optimization.
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As a final test, we ran the kMC simulations with NNP on a
truncated octahedron Pt3Co nanoparticle, followed by DFT
calculations after structure optimization (Figure 3e). The
energies obtained from NNP and DFT calculations are
referenced to the energy of the first snapshot of the kMC
simulation. The NNP and DFT energies are in reasonable
agreement for all trajectories. We also confirmed the accuracy
of the NNP in kMC simulations using other nanoparticle
shapes with single-point DFT calculations (Figure S13).
Design Principles for Pt3Co Nanoparticles. To identify

design principles for Pt3Co nanoparticles, we analyze the
influence of size, shape, and atomic ordering on degradation
performance using off-lattice kMC simulations with the NNP.
First, we examine the impact of size on the degradation
behavior of Pt3Co nanoparticles. While it is well-known that
larger nanoparticles exhibit increased stability,69 the exact
quantity of the contribution from size remains unclear because
the control of size often accompanies the change in other
factors such as composition.70 Therefore, we study the effect of
size independently using kMC simulations with Pt3Co
truncated octahedron nanoparticles. Figure 4a depicts the
time evolution of the dissolution ratio under fuel cell operating
conditions (voltage = 0.8 VSHE and temperature = 350 K) for
nanoparticles of varying sizes along with the corresponding
initial and final structures on the right side. As expected, the
dissolution ratio decreases with increasing size; after 50 h of
the reaction process, 2.52, 3.28, and 4.04 nm nanoparticles lose
40, 23, and 12% of their atoms, respectively. The dissolution
ratio as a function of the nanoparticle size is plotted in Figure
4b. Notably, the dissolved amounts of Pt and Co across all
sizes indicate that the dissolution ratio of Co is approximately

three times larger than that of Pt. For a quantitative analysis,
we fit the total dissolution ratio to a form derived from the
Gibbs−Thomson equation71 (see the Supporting Information
for the derivation)

=
d d

total loss (%) at 24 h
15 nm

exp
4.21 nm

(3)

where d represents the diameter of the nanoparticle.
On the right side of Figure 4a, we observe that the final

structures display distorted surface morphologies compared to
the original angular shape, primarily due to the presence of
surface defects, resulting in a more rounded shape. This surface
rounding phenomenon observed after electrochemical activa-
tion agrees with the experimental observations made using
high-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM).28 To further clarify the
geometry evolution of Pt3Co nanoparticles, we calculate the
angular distribution function (ADF) of the octahedral
nanoparticle in Figure 5a. The ADF of the initially relaxed
structure before kMC simulation (blue line), the final structure
(orange line), and the ideal FCC octahedron are compared.
We note an evident broadening of the peaks, even from the
initial structure, due to the optimization. This broadening
becomes more significant after a kMC simulation. In particular,
the final kMC structure exhibits a markedly widened peak
around 120° (red arrow), which is attributed to the 5-order
ring formed due to the distortions near vacancies (see Figure
5b for atomic configurations). We also present the ADF values
of surface atoms for the icosahedral nanoparticle in Figure 5c.
We observe emergence of a broad peak at 90° (red arrow)
from the final kMC structure, absent in the on-lattice structure

Figure 4. Impacts of microstructures on the degradation ratio of Pt3Co nanoparticles. (a) Time evolution of dissolution ratio of various sizes of
truncated octahedron Pt3Co nanoparticles. The dissolution ratio is defined as a ratio of the number of dissolved atoms to that of the initial total
atoms. (b) Dissolution ratio after 24 h as a function of diameter. (c) Time evolution of dissolution ratio of various shapes of Pt3Co nanoparticles.
(d) Time evolution of dissolution ratio of ordered, disordered, and core/shell Pt3Co nanoparticles. In (a,c,d), the shaded area in the plot represents
the standard deviation, and the initial and final atomic structures are displayed on the right sides of the plot, respectively. All initial and final
structures are cut by a quarter to display their internal atomic arrangements. In all simulations, the applied voltage and temperature are set to 0.8
VSHE and 350 K, respectively.
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and the initial kMC structure. The corresponding atomic
structure is shown in Figure 5d. Note that these distorted
structures cannot be captured from the existing on-lattice kMC
approaches because they do not allow for optimization during
the simulation.22,24−26

We also examined the bond-length differences between the
structures before and after kMC simulations. Figure 6a,b shows

the Pt−Pt and Pt−Co bond lengths on the surface and
subsurface before and after kMC simulation, respectively. In
both structures, the Pt−Pt bond length on the surface
(approximately 2.70 Å) is smaller than that of Pt crystal
(2.80 Å) and Pt3Co crystal (2.74 Å), which might be attributed
to the influence from the high Co concentration of the
subsurface (see Figure 6c,d). Interestingly, after kMC
simulations, the nanoparticles exhibit a slight reduction in
the Pt−Pt bond length at the surface. Concurrently, we
observe an elongation in both the Pt−Co and Pt−Pt bond
lengths in the subsurface layers. This trend is likely a
consequence of the selective dissolution of Co atoms from
surface sites. As Co atoms are depleted primarily from edge
and vertex locations, the adjacent Pt atoms experience reduced
coordination numbers, leading to a tighter Pt−Pt binding at
the surface. In contrast, the increase in average surface bond
lengths can be rationalized by disappearance of Pt−Co bonds
shorter than Pt−Pt bonds.
To investigate the effects of nanoparticle shape on durability,

we compare dissolution rates of truncated octahedron,
icosahedron, cuboctahedron, and octahedron nanoparticles of
similar sizes (approximately 3.3 nm), as shown in Figure 4c.
The durability ranking is icosahedron > octahedron >
truncated octahedron > cuboctahedron. This trend is
consistent with the trend in (111) surface coverages, where
the ratios of the (111) surface area in the total surface area are
1.0, 1.0, 0.76, and 0.37 for icosahedron, octahedron, truncated
octahedron, and cuboctahedron, respectively. This is attributed
to the higher vacancy formation energies on (111) surfaces
compared to (100) surfaces (see Figure 3b), which aligns with
the experimental observations obtained through inductively
coupled plasma mass spectrometry (ICP-MS).72 The distinct
durability between octahedrons and icosahedrons, despite
having the same (111) surface coverage, stems from the
varying number of neighboring atoms at the edge sites;
octahedrons have 7 neighboring atoms at the edge sites, while
icosahedrons have 8. As a result, icosahedrons exhibit lower
vacancy formation energies on the edge sites compared with
octahedrons (see Figure S14). It should be noted that the
previous DFT study reported a stability trend of truncated
octahedron > cuboctahedron > icosahedron,18 which differs
from our findings. However, ref 18 solely assessed relative
stability based on the dissolution potential of the vertex atoms,
which is distinct from the edge and facet sites.21 The
comparison between our study and ref 18 indicates that the
contributions from facet and edge sites have a more significant
impact on degradation than those from vertex sites.
To examine the influence of atomic orderings on durability,

we compare the dissolution rates of nanoparticles with
ordered, disordered, and core/shell (Pt0.75Co0.25/1 ML of Pt)
structures, as shown in Figure 4d. Note that it is challenging to
make a fair comparison by experiments because the control of
atomic orderings by heat treatment usually accompanies the
change in the nanoparticle size.17 Therefore, the relative
durability between nanoparticles of ordered and disordered
phases is still controversial.15,16 We observe that the distinction
between ordered and disordered phases is not particularly
significant, especially when compared with the distinction
between these phases and the core/shell structure. This is
because the surface of the ordered phase also becomes
disordered after activation (see the final structure in Figure 4d)
due to the surface rounding effect (see above).

Figure 5. Angular characteristics of reduced octahedral Pt3Co
nanoparticle. (a) ADF of nanoparticles of the surface atoms of the
octahedral nanoparticle. (b) Atomic structure associated with the
broadened peak near 120° as indicated by the red arrow in (a). (c)
ADF of nanoparticles of surface atoms of the icosahedral nanoparticle.
(d) Atomic structure associated with the broadened peak near 90° as
indicated by the red arrow in c. The red Pt atoms in b and d
correspond to the configurations that result in the ADF values pointed
by red arrows in a and c. The dashed lines in (a,c) stand for the angles
found in the FCC octahedron and icosahedron, respectively.

Figure 6. Variation in the bond length and composition of Pt3Co
nanoparticles before and after kMC simulations. Bond length of
surface and subsurface atoms (a) before and (b) after kMC
simulations for varying sizes of octahedron nanoparticles. Content
of Co atom as a function of distance from the surface (c) before and
(d) after kMC simulations for 3.28 nm nanoparticles. The green (red)
dashed line in (a,b) represents the Pt−Pt (Pt−Co) bond length in the
Pt (Pt3Co phases). In (c,d), the red dashed line indicates the Co
composition in Pt3Co (i.e., 0.25).
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To summarize, we have identified the impact of size, shape,
and atomic ordering on the durability of Pt3Co nanoparticles.
Our findings reveal that increasing the nanoparticle size and
(111) surface coverage enhances durability, while the atomic
ordering of the core phase has a relatively minimal effect
compared to other factors. Additionally, the (111) facet
exhibits higher catalytic activity compared to different facets,73

making the icosahedron shape ideal in terms of both activity
and durability. Enlarging the nanoparticle size enhances
durability, but it also leads to a decrease in the surface-to-
volume ratio by 1/d (d: diameter), resulting in a proportional
reduction in catalytic activity. Conversely, reducing the
nanoparticle size increases the surface-to-volume ratio, but it
also increases the degradation rate and eventually reduces the
surface area. The reduced surface area (SA) relative to the
initial surface area due to the degradation can be derived from
the total volume loss (eq 3) as follows

= i
k
jjj y

{
zzzd d

SA ratio 1
0.15 nm

exp
4.21 nm 2/3

(4)

We define the figure of merit (FOM) as a multiplication of
these two factors

= × i
k
jjj y

{
zzzd d d

FOM
1

1
0.15 nm

exp
4.21 nm 2/3

(5)

where this value is proportional to the surface-to-volume ratio
after activation, and thus represents the effective catalytic
activity. Figure 7 shows the FOM as a function of the
nanoparticle size. The optimal catalytic performance is attained
at a diameter of 2.5 nm.

Although not addressed above, the structural changes during
dissolution, yet such changes, can influence catalytic perform-
ances. While it is possible to determine catalytic performances
directly from atomic structures using additional machine-
learned models, as indicated in,74,75 such studies would be
beyond the scope of this work. Instead, for a simple
assessment, we examine the Pt−Pt bond length on the surface
due to its established correlation with the activation barrier of
ORR.76 As illustrated in Figure 6a,b, the Pt−Pt bond length at
the surface is lower than that of Pt crystal, so the catalytic
activity of Pt3Co is expected to show higher activity than pure
Pt nanoparticle. We also find that there is a minimal difference
in this bond length after kMC simulations. However, atypical
surface structures created during the dissolution, such as the 5-

order rings shown in Figure 5b, could significantly impact the
catalytic performance. An in-depth study on the catalytic
properties of such distorted structures will be conducted in
future studies.
Extending the Elemental Systems. So far, we have

studied the durability of the Pt3Co alloy nanoparticles. The
question remains whether the developed method is applicable
to other Pt alloy systems with 3d metals, such as Ni, Cu, and
Fe, including ternary compositions.77 For the test, we train the
NNPs for Pt3Ni, and Pt3Co0.5Ni0.5 compositions and check the
accuracy. To expedite the process, we change Co atoms in the
original training set into Ni completely (partially) for the Pt3Ni
(Pt3Co0.5Ni0.5) system to generate the training set. The NNPs
of both systems are well-trained with low RMSEs (energy <10
meV/atom and force <0.3 eV/Å; see Table S4). The trends in
durability in relation to the size, shape, and atomic ordering of
Pt3Ni nanoparticles are also similar to those of Pt3Co
nanoparticles (see Figure S15a−c). To note, we assume that
the BEP parameters of Co and Ni are identical due to their
similar electrochemical characteristics.78 The durability of
Pt3Ni nanoparticles marginally surpasses that of Pt3Co
nanoparticles under the same condition, which is in good
agreement with the experiments.78 In addition, Pt3Co0.5Ni0.5
nanoparticles also demonstrate slightly enhanced durability
compared to Pt3Co (see Figure 8). The comprehensive
investigation into the variance in composition extends beyond
the scope of this study and will be the subject of future studies.

Our method requires the BEP parameters obtained from the
experiments. The ab initio computation of the activation
barriers in electrochemical reactions is a formidable task due to
the intricate nature of atomic environments and the hurdles
faced when incorporating electrode potentials in the first-
principles calculations (i.e., grand-canonical calculations). We
note that considerable efforts are being made to tackle each of
these challenges.46−49 Additionally, advancements are also
being made in directly simulating solvent environments and
electrochemical reactions using MLPs.79−84

■ CONCLUSIONS
In summary, we have demonstrated that NNP combined with
off-lattice kMC simulations can be an effective tool to

Figure 7. Activity factor, durability factor, and overall FOM as a
function of nanoparticle diameter. The activity factor is defined as 1/
d, and the durability factor and FOM are defined as eqs 4 and 5,
respectively.

Figure 8. Time evolution of dissolution ratio of Pt−Co, Pt−Ni, and
Pt−Co−Ni system. The shaded area in the plot represents the
standard deviation, and the initial and final atomic structures are
displayed on the right sides of the plot, respectively. All initial and
final structures are cut by a quarter to display their internal atomic
arrangements. In all simulations, the applied voltage and temperature
are set to 0.8 VSHE and 350 K, respectively.
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accurately describe the degradation process of real-scale
nanoparticles. We systematically develop the NNP for Pt3Co
alloy nanoparticles based on the reference data obtained from
DFT calculations, and the NNP yields reasonable accuracy.
Through kMC simulations with the NNP, we investigate the
influence of size, shape, and atomic ordering, leading to the
derivation of design principles. Furthermore, we validate the
applicability of our method to other elemental systems. We
propose that the same approach employed in this study can be
utilized to derive design principles for a wide range of
nanoparticles. Thus, we postulate that this work contributes to
the advancement of fuel cell technology and provides insights
for the development of active and durable catalysts.
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