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ABSTRACT: Neural network potentials (NNPs) are gaining much attention as they enable fast
molecular dynamics (MD) simulations for a wide range of systems while maintaining the accuracy
of density functional theory calculations. Since NNP is constructed by machine learning on
training data, its prediction uncertainty increases drastically as atomic environments deviate from
training points. Therefore, it is essential to monitor the uncertainty level during MD simulations to
judge the soundness of the results. In this work, we propose an uncertainty estimator based on the
replica ensemble in which NNPs are trained over atomic energies of a reference NNP that drives
MD simulations. The replica ensemble is trained quickly, and its standard deviation provides
atomic-resolution uncertainties. We apply this method to a highly reactive silicidation process of
Si(001) overlaid with Ni thin films and confirm that the replica ensemble can spatially and
temporally trace simulation errors at atomic resolution, which in turn guides the augmentation of
the training set. The refined NNP completes a 3.6 ns simulation without any noticeable problems.
By suggesting an efficient and atomic-resolution uncertainty indicator, this work will contribute to
achieving reliable MD simulations by NNPs.

By replacing a knowledge-based formulation with data-
driven parametrization in potential development, ma-

chine-learning (ML)-based interatomic potentials are extend-
ing the application range of the classical molecular dynamics
(MD) simulation to multicomponent systems with complex
bonding natures.1 For example, ML potentials have been
successfully applied to simulating phase-change materials,2

catalysts,3 nanoclusters,4 and solid−liquid interfaces,5 all of
which are beyond the current scope of conventional classical or
first-principles MD simulations. The ML potentials are trained
over first-principles total energies and their derivatives (forces
and stresses) of 102−104 structures that are sampled from MD
trajectories or crystalline structures with deformations or
defects.
Machine learning is essentially an interpolative algorithm, so

its prediction uncertainty grows rapidly as input features
deviate from the training domain. In terms of ML potentials,
the accuracy of the energy prediction degrades unacceptably if
local atomic configurations are substantially different from
those in the training set. If this happens during MD
simulations, computational results may not be fully meaningful
even if the simulation terminates without any drastic failures
such as diverging energies. Therefore, it is critical to monitor
uncertainty levels during MD simulations when utilizing ML
potentials. Note that such problems are less acute with
traditional classical potentials because principle-based, hard-
coded functions can safeguard atomic configurations against
unintended structures.
To date, several types of ML potentials have been applied to

material research, in particular, the Gaussian-approximation

potential (GAP),6 the high-dimensional neural network
potential (NNP),7 and the kernel-ridge-regression (KRR)-
based potential.8 While GAP can automatically estimate the
prediction uncertainty using posterior predictive variances,9 no
such formula exists with the NNP- or KRR-based potential. In
the machine-learning community, the prediction uncertainty of
neural network models is often assessed by employing a model
ensemble that is formed by varying the training data or
network structure.10 The output variances within the ensemble
are used as an indicator of uncertainty. The ensemble method
was also applied to NNP.11−13 In ref 11, an ensemble of NNPs
was generated by bootstrapping training data, and it was found
that the variance among ensemble NNPs increased when the
simulation encountered configurations outside the training
data. In refs 14−17, multiple NNPs with different network
dimensions were generated with the same training data, and
output discrepancies among NNPs were used as a reliability
indicator or in selecting training points for adaptive learning.
However, these ensemble methods require training multiple
NNPs over first-principles total energies and atomic forces,
which will impede the potential development in the case of big
training data of structures. In addition, while the ensemble
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half-spread of total energies can signal instances when the
simulation enters environments that were not learned, it is
difficult to localize atoms with high uncertainties out of 103−
105 atoms in the simulation box, making it hard to refine NNPs
by supplementing the training set. We note that the ensemble
half-spreads of atomic energies in ref 11 could identify
problematic configurations at the atomic scale. However,
atomic energy mapping under the given total energies is not
unique,18 introducing a certain degree of randomness into
atomic energies for each training of NNP in the ensemble. This
should obscure the atomic-scale resolution of the reliability
indicator.
In this Letter, we present an efficient and atomic-resolution

uncertainty indicator for NNP that is based on a “replica”
ensemble. The NNPs in the replica ensemble differ in the
network structure and initial weights, and they are trained
directly over atomic energies of the reference NNP that drives
MD simulations. The training time for replica NNPs is much
shorter than that for the reference NNP, and the standard
deviation within the ensemble plays as the atomic-resolution
uncertainty indicator during MD simulations. We apply this
method in simulating silicidation processes of Ni contacts in
semiconductor devices and demonstrate that the method can
reveal spots with high uncertainty at the atomic scale. By
analyzing the problematic region, we can improve the NNP
with a repairing data set, thereby achieving a reliable simulation
for an extended simulation time. The rest of the Letter is
organized as follows. We first explain the notion of replica
NNP and how it can be utilized during MD simulations. Next,
we provide details of the model system and NNP training for
the silicidation simulation. Then, a full cycle of NNP
development for the Ni−Si interface reaction is demonstrated.
Finally, we summarize and conclude.
In NNP, the total energy of a system (Etot) is expressed as

the sum of atomic energies (Eat) that depend on the symmetry
function (G) reflecting local environments19

∑=E E G( )
i

itot at
(1)

where i is the atom index and the atomic energy is given by a
feed-forward neural network.7 (For simplicity, we assume a
unary system, but the discussions easily generalize to
multicomponent systems.) We first obtain a reference NNP
in a standard way by training it over first-principles results
based on density functional theory (DFT). The loss function is
defined with respect to DFT total energies and atomic forces.20

This reference NNP is used in evaluating potential energy
surfaces for MD simulations. Similar to the literature,11−13 we
employ an ensemble approach to gauge uncertainties in Etot
and Eat. The main difference in the present approach is that
NNPs in the ensemble (called replica NNPs hereafter) directly
learn atomic energy {Eat(G); G ∈ training set} output by the
trained reference NNP (Figure 1a). To calibrate numeric
scales in uncertainty, we control the initial range of
randomized NN weights and also diversify the network size
of replica NNPs. The standard deviation in the atomic energy
(σat(G)) is calculated among replica NNPs and used as the
prediction uncertainty at G. During the MD simulation, Eat of
each atom is calculated by the reference NNP, and it is
associated with the uncertainty value of σat from replica NNPs
(Figure 1b).
There are two benefits to employing such double-tier NNP:

first, by training only over atomic energies, excluding

derivatives such as forces and stresses, the computational
cost of training replica NNPs becomes negligible compared to
that for training the reference NNP over the whole set of
properties. Second, replica NNPs by construction are designed
to produce the same atomic energies for local configurations in
the training set, but their inferences disagree for chemical
environments outside the training set. This leads to atomic
resolution in the uncertainty estimation by replica NNPs. As
mentioned previously, in the ensemble NNPs that are trained
over total energies,11 such atomic resolution is not always
guaranteed because of freedom in partitioning total energies
into atomic contributions.
As an example of applying the replica ensemble as an

uncertainty indicator, we choose the Ni-silicidation process,
which is one of the key processes in the fabrication of
semiconductor devices. The metal-silicidation process reduces
the contact resistance at gate-source/drain contacts by
lowering Schottky barriers. The process itself is rather simple;
the metal layer is deposited on the Si substrate at room
temperatures and annealed at 350−450 °C, which yields high-
quality silicides with a controlled thickness.21 Recently, the
metal-silicidation process has received renewed attention in
sub-10-nm device architectures because the mechanism of
silicide formation changes when the deposited Ni thickness is
below 4 nm.22,23 Furthermore, additive elements such as Pt
and Co are known to control the silicide phase and redistribute
dopants in the Si channel. However, a microscopic under-
standing at the atomic scale is incomplete for the silicidation
process, which may hinder further optimization of the process
in highly scaled devices.
In ref 24, the formation of Ni silicide on the Si(001)

substrate was studied by first-principles MD simulations,
focusing on the role of Pt as a stabilizer of the NiSi phase.
However, the sheer computational costs of DFT calculations
severely limited the system size and simulation time.
Furthermore, in order to accelerate interface reactions, the
simulations were executed at an unrealistically high temper-
ature of 2000 K, which may affect the simulation results
significantly in view of the temperature dependence of the
process.22,25 These limitations of DFT calculations could be

Figure 1. (a) Schematic description of reference NNP and the replica
NNP ensemble. Reference NNP drives MD simulations, and the
replica NNP ensemble measures the uncertainty level of atomic
configurations by the standard deviation (σat) in atomic energies. (b)
Schematic description of how σat can be used as the uncertainty
indicator of atomistic simulations with the example of a Si surface
model. When the MD trajectory of a certain atom deviates from the
true potential energy surface (PES) (e.g., a surface atom in the red
dashed circle), the uncertainty in the replica ensemble becomes larger.
In contrast, the uncertainty of atoms within normal MD trajectories
(e.g., a bulk atom in the blue dashed circle) remains small.
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mitigated by employing NNP. However, the development of
NNP aiming at the silicidation process is challenging because
the system concurrently involves salient covalent (Si) and
metallic (Ni) bonds, along with complicated mixed bonding
(NixSiy). Furthermore, the bonding nature constantly changes
during the reactive interdiffusion of Ni and Si atoms, posing
challenges in selecting a training set that can properly sample
the configurational space explored during MD simulations.
The complexity of the training set also necessitates monitoring
MD simulations using an uncertainty indicator. Below, a full
cycle of NNP development for the Ni−Si interface reaction
will be discussed.
Table 1 summarizes the training set for the reference NNP.

Besides static distortions of crystals, the training set includes
DFT MD snapshots of crystals, liquids, amorphous structures,
and surface slabs. (Details of DFT calculations are provided in
the Supporting Information.) Crystal structures are annealed at
relatively high temperatures of up to 2000 K because the highly
exothermic reaction can significantly increase local temper-
atures at the interface. In addition, we consider MD
simulations of Ni−Si interfaces at various temperatures
(300−1500 K) in order to train NNP over interface reactions
directly. The training set contains 4944 structures with 198 694
and 259 388 training points for Ni and Si, respectively. Full
details and atomistic models of the training data can be found
in Table S1 and Figures S1−S3 of the Supporting Information.
In training NNPs and performing MD simulations, we use

the SIMPLE-NN package (https://github.com/MDIL-SNU/
SIMPLE-NN)20,26 and the LAMMPS package.27 (A more
detailed description of the training procedure and training
RMSE can be found in the Supporting Information.) After
training, we compare NNP and DFT on key properties such as
the equation of states for crystals, density and energy of
amorphous structures, and radial distribution function of liquid
and amorphous structures. The results are compiled in the
Supporting Information, and all of the properties agree well

between NNP and DFT. As a more direct test, we also perform
Ni silicidation for a relatively small Ni−Si interface structure
consisting of 60 Ni atoms and 120 Si atoms (top-left figure in
Figure 2). This is the same structure as interface (2) in Table
1, but the test simulation starts with different initial velocities
and lasts for 20 ps, much longer than 5 ps in the training set.

Table 1. Summary of Reference Structures and Root-Mean-Square Errors (RMSEs) for the Validation Seta

structure type number of training points temp (K) RMSEenergy (meV/atom) RMSEforce (eV/Å)

Ni 3704 0, 500−1500 3.6 0.16
Ni(001) 8000 1000 2.1 0.16
Si 7408 0, 500−1500 3.0 0.16
Si(001) 15 360 1000 4.4 0.38
δ-Ni2Si 18 240 0, 1000−2000 3.9 0.28
l-Ni2Si 24 000 2000 5.1 0.45
a-Ni2Si 9600 800 3.8 0.28
Ni2Si (l → a) 14 400 2000−300 3.1 0.28
NiSi 12 160 0, 1000−2000 7.1 0.45
l-NiSi 16 000 2000 7.0 0.41
a-NiSi 6400 800 7.4 0.43
NiSi (l → a) 9600 2000−300 6.8 0.41
α-NiSi2 18 240 0, 1000−2000 4.8 0.33
l-NiSi2 24 000 2000 5.2 0.30
a-NiSi2 9,600 800 8.3 0.50
NiSi2 (l → a) 14 400 2000−300 5.5 0.49
interface (1) 108 410 300, 1000, 1300, 1500 4.8 0.40
interface (2) 92 160 1000, 1300 2.5 0.30
interface (3) 46 400 1000 3.0 0.28
total 458 082 5.1 0.34

aThe first column describes the structure type of training data. The second column is the number of training points (the number of atoms)
corresponding to the structure type. The third and fourth columns show RMSEs for the energy and force, respectively. l and a indicate liquid and
amorphous phases, respectively.

Figure 2. Comparison of the DFT and NNP total energies per atom
along MD trajectories for a small Ni−Si interface structure with 60 Ni
atoms and 120 Si atoms. The blue line represents the energy from
1000 K NNP-MD with a time step of 1 fs. The green line represents
the DFT energy of the NNP-MD trajectory sampled with a 50 fs
interval. The red line with the right-hand y scale represents differences
between DFT and NNP energies.
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The blue line in Figure 2 shows total energies by NNP with
respect to the simulation time, and the top figures are
structures at selected instances. For comparison, DFT energies
are calculated every 50 fs along the NNP-MD trajectory (the
green line). Overall agreement between NNP and DFT is
good, and fine features in the total energy are well reproduced
by NNP. However, the energy difference linearly increases with
time (red line). This is attributed to a small discrepancy in the
reaction energy (Ni + Si → NiSi) between DFT and NNP.
We train a replica ensemble which consists of five NNPs that

are independently trained over atomic energies of the reference
NNP at G values in the training set. To obtain output
variances that are large enough for uncertainty quantification,
NNPs in the ensemble should be decorrelated. This can be
achieved by diversifying model parameters and training
conditions such as initial weights, training/validation set
selection from a data set (for example, bootstrap aggregating),
network design such as the layer size and depth, and training
hyperparameters. Among these methods, we find that varying
the weight parameters and network size achieve a sufficient
range of prediction variation. In detail, the initial weights are
chosen from a normal Gaussian distribution with a zero mean
and a standard deviation of σw. When σw is too small, the
replica NNPs tend to converge and energy variances of the
ensemble become much smaller than actual errors relative to
DFT results. On the other hand, if σw is too large, then NNPs
easily fall into local minima, degrading training. To strike a
balance, we choose σw = 3.0; when σw exceeds this value, some
replica NNPs produce RMSEs larger than 100 meV, which is a
signature of poor training quality. In addition to tuning σw, we
also diversify the network structure (70−30−30−1, 70−50−
50−1, 70−70−70−1, 70−100−100−1, and 70−120−120−1)
and select a random 70% of atomic energies by the reference
NNP as a training set, independently for each replica NNP. In
training replica NNPs, we use the same hyperparameters as for
the reference NNP. Figure S7 in the Supporting Information
shows the learning curves of the replica NNPs, and it is seen
that resulting RMSEs range from 30 to 70 meV (RMSE of the
ensemble average is 16 meV). Notably, the standard deviation
among replica NNPs (σat(G)) is 50 meV for G in the training
set, confirming that the prediction uncertainty is low for the
learned local configurations. Note that RMSEs of replica NNPs
are an order of magnitude larger than RMSEs for typical
NNPs, which are usually a few meV/atom. This is because
direct learning of the atomic energy is far more constrained
than learning total energies that are sums of atomic energies. In
addition, σw is larger than for typical training, causing the
training result to fall into a local minimum.
For a large-scale simulation of the silicidation process using

NNP, we construct a Ni/Si(001) interface slab of ∼8.5 nm
thickness as shown in Figure 3, which includes 3008 Si and
2080 Ni atoms. The Ni layer is 2 nm thick in the simulation,
while Ni films with a thickness of 1−10 nm were deposited in
experiments. The lattice parameters in the xy plane are fixed to
those of crystalline Si at theoretical equilibrium. In Figure 3,
the bottom two layers are fixed and the top three layers are
heated to 1000 K under the NVT condition controlled by the
Nose−́Hoover thermostat.28 The rest of the atoms are
simulated under the NVE condition. This allows for simulating
the transport of heat energies that are generated during
interfacial reactions and dissipated into the bottom layer
through thermal conduction.

In the experiment, Ni is deposited at room temperature.
When we carry out the simulation at this temperature, only a
few Ni and Si atoms react at the interface. Therefore, we start
the high-temperature annealing right after the initial relaxation
of the structure. Furthermore, at experimental annealing
temperatures of 350−450 °C, the reaction almost stops after
four Ni layers (∼0.7 nm) are silicidated. In order to accelerate
the dynamics and observe meaningful reactions within the
simulation time, we increase the temperature to 726 °C or
1000 K.
Figure 4 displays characteristic instances during the MD

simulation that is carried out for up to 1 ns. In a very early

stage (t < 0.2 ns), vigorous interfacial reactions are observed,
which originate from the highly exothermic reaction of Ni + Si
→ NiSi (1.0 eV per formula unit). As a result, amorphous
NixSiy layers grow up to a thickness of ∼2 nm (Figure 4b). For
0.2 < t < 0.5 ns, the concentration gradient of Ni decreases
along the z axis and so does the driving force for reactive
diffusion. Consequently, the silicidation process gradually
slows. In Figure 4c, the concentration profile within the NixSiy
layer is approximately linear with the atomic fraction of Si
varying continuously from 0.55 to 0.3, implying the absence of
phase separation along the z direction. At around 0.6 ns, the
L12 phase of NiSi nucleates and grows from the interface as

Figure 3. Model structure of an 8.5-nm-thick Ni/Si(001) interface
slab. The two bottom layers are fixed during the MD simulations. The
next three layers are heated to 1000 K using the NVT ensemble.
Other parts are simulated using the NVE ensemble.

Figure 4. Snapshots and concentration profiles of Ni and Si with
respect to z from the large-scale NNP MD trajectory. (a) 0, (b) 0.2,
(c) 0.5, and (d) 0.9 ns. The inset in (d) indicates that the L12 phase
formed at the interface.
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shown in Figure 4d. Once the crystalline phase with a thickness
of ∼2 nm forms at the interface, the diffusion is virtually
stopped and no further interdiffusion is observed until 1 ns. As
a result, the system arrives at a steady-state distribution
comprising three distinct layers (a-Ni2Si/L12-NiSi/Si). (The
NNP MD movie is provided in the Supporting Information.)
Next, we check the soundness of the simulation using the

replica ensemble. Figure 5a shows atom-by-atom coloring of

σat for instances selected in Figure 4. The frequency histogram
of σat for the whole simulation is shown in Figure 5b, and it is
seen that σat is mostly less than 50 meV, which is the average
σat for training points (methods discussion) and an uncertainty
threshold. As such, MD simulations appear to be reasonable
for most configurations as confirmed by dominantly light
colors in Figure 5a. Nevertheless, the uncertainty indicator also
detects concerning values of σat ≳ 0.1 eV for a number of
regions near Ni/NiSi and NiSi/Si interfaces as indicated by
blue (Ni) and red (Si) atoms. Most notably, σat is largest for
the L12 phase formed at the interface. In fact, the L12 phase
was not considered in the training set, and DFT calculations
show that the L12-NiSi phase is unstable against the most
stable MnP-type NiSi by 0.21 eV/atom. However, the present
NNP estimates that L12 is more stable than the MnP type by
0.08 eV/atom. This means that the nucleation of the L12 phase
is an artifact triggered by a subtle deviation from the training
set.
The atomic resolution of σat allows for localizing simulation

defects temporally as well as spatially. At ∼0.5 ns, a cluster of
atoms near the NiSi/Si interface begins to develop high

uncertainties (a round box in Figure 5a) and later nucleates
into the L12 phase. In addition, some atoms near the NiSi/Ni
interface and Si atoms at the Ni surface exhibit notable
uncertainties. These errors should follow from deficiencies of
the interface models in the training set. By close inspection, we
find that the NixSiy layer in the training set is rather Ni-rich
compared to the boxed region in Figure 5a. This is because the
simulation time is too short to permit sufficient interdiffusion.
Furthermore, there are only three Ni layers in interface (1) and
(2) models, which is too thin to sample Ni/NiSi interfaces
properly.
Inspired by the above analysis, we augment the training set

with additional structures from DFT calculations. We first add
MD trajectories of a model with five Ni layers (similar to
interface (3)) at a higher temperature of 1300 K and a longer
simulation time of 40 ps, thereby sampling interfacial
compositions similar to NNP-MD simulations. Furthermore,
we add annealing trajectories at 1000−2000 K for crystals such
as γ-Ni31Si12, β1-Ni3Si, β2-Ni3Si, ε-Ni3Si2, θ-Ni2Si, and NiSi (ε-
FeSi type) to calibrate the formation energies of NixSiy mixed
layers with fine stoichiometric variations. We also consider a
surface model of amorphous NiSi because Si atoms with high
uncertainties are noticeable in the surface region (t = 0.9 ns in
Figure 5a). These supplementary structures add 258 030
points to the final training set, which is then used to train a
refined NNP (r-NNP). The RMSEs of r-NNP are 5.62 meV/
atom (energy) and 0.23 eV/Å (force) for the validation set. As
shown in Figures S8−S11 and Table S4, the computational
results on test structures of crystals, liquids, and amorphous
phases are similar between r-NNP and the original NNP.
However, Figure S11 shows that the interface reaction is
described more precisely by r-NNP in comparison with Figure
2, implying that r-NNP might be more accurate for interfacial
reactions.
Figure 6a−d shows the sequence of the silicidation process

simulated by r-NNP up to 0.9 ns (total simulation time 3.6 ns).
The model and simulation conditions are the same as in the
previous simulation, and the prediction uncertainties by σat in
Figure 6e,f are evaluated similarly to Figure 5. In contrast with
Figure 5b, almost all of the atoms exhibit σat < 0.1 eV
throughout the whole simulation except for brief fluctuations
above the threshold, indicating that the supplementary training
structures enabled reliable and stable simulations. Overall, the
simulation proceeds similarly to Figure 5 up to ∼0.5 ns,
namely, vigorous initial reactions until 0.2 ns followed by
sluggish interdiffusion. The amorphous NixSiy layer is thicker
than in the previous simulation in Figure 4d by ∼1.5 nm.
Unlike the previous simulation, the incubation of any crystal
phase is absent with r-NNP, which contributes to the
formation of thick interfacial layers (the dashed box in Figure
6c) rather than the abrupt interface in Figure 4c. After 0.6 ns,
the thickness of the NixSiy layer remains nearly constant, and
atoms diffuse mainly within the amorphous layer. Further
simulation up to 3.6 ns changes only the stoichiometry within
the amorphous layer close to 1:1 (not shown). In experiments,
epitaxial NiSi2−δ (δ = 0.5−0.6) phases grow at high annealing
temperatures.29 Energy differences between crystal and
amorphous phases are similar between r-NNP and DFT, so
amorphous NiSi will eventually crystallize in the simulation.
However, the incubation time for crystallization is much longer
than the feasible simulation time,2 so we could not observe the
formation of crystalline phases within 3.6 ns. (The r-NNP MD
movie is provided in the Supporting Information.)

Figure 5. (a) Snapshots from the Ni-silicidation MD trajectory at 0,
0.2, 0.5, and 0.9 ns with the color scale by σat. (Parts of the bottom Si
layers are removed.) (b) Histogram of σat collected over the 1 ns
simulation.
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For further analysis of the electronic property, we
theoretically estimate the Schottky barrier height (SBH, Φb)
for the as-obtained NixSiy/Si interface. The NixSiy/Si interface
structure is obtained from the r-NNP MD simulation of the
model structure after 3.6 ns of 1000 K MD. Before the DFT
calculation, atomic positions are relaxed with r-NNP at 0 K.
Then, the interface region of the whole structure is sliced to
reduce the number of atoms to below 1000. Dangling bonds of
the bulk-terminated Si surface are passivated with H atoms. As
a result, the interface structure consists of seven layers of Si and
a 6.2-Å-thick NixSiy layer (Figure S12a in the Supporting
Information). To address the finite-size effect, the crystalline Si
is also computed independently. The SBHs for n- and p-type Si
are obtained as follows

Φ = − − ⟨ ⟩ − ⟨ ⟩E E V V( )nb, C F Si
bulk

Si
interface

(2)

Φ = − + ⟨ ⟩ − ⟨ ⟩E E V V( )pb, F V Si
bulk

Si
interface

(3)

where EC and EV denote the conduction and valence band
edges obtained from the bulk Si structure and EF indicates the
Fermi energy obtained from the NixSiy/Si interface structure.
In eqs 2 and 3, ⟨V⟩Si

interface refers to the average electrostatic
potential of the bulk Si part in the NixSiy/Si interface system,
while ⟨V⟩Si

bulk is the corresponding value for the crystalline Si.30

In addition, to compensate for the band gap underestimation
in semilocal functionals, the band edge energies are corrected
with the hybrid functional method (HSE06).31 As a result, the
interface model gives SBH values of 0.83 and 0.21 eV for Φb,n
and Φb,p, respectively, which is in reasonable agreement with
experimental values of 0.7 and 0.35 eV for NiSi/Si
interfaces.32,33

In summary, we proposed the replica ensemble that enables
efficient and atomic-resolution uncertainty estimation in
energy prediction by NNPs. The replica NNPs are trained

directly over atomic energies of the reference NNP that
calculates potential energy surface during MD simulations. By
excluding energy derivatives from the loss function, the
construction of the replica ensemble takes much less time
than for conventional NNPs. The usefulness of the suggested
indicator was demonstrated by simulating the Ni silicidation
process. The replica ensemble was able to trace highly
uncertain atomic configurations at interfaces during the MD
simulation, which later evolved into the formation of the
unphysical L12 phase. The uncertainty analysis revealed
structures that were deficient in the training set. With the
augmented training set, a refined NNP was developed and
reliable Ni silicidation simulation was carried out until 3.6 ns.
We have implemented the replica-ensemble method into the
SIMPLE-NN package, so it can be used by practitioners
without significant effort. In conclusion, by providing an
efficient atomic-resolution uncertainty indicator, this work will
contribute to achieve reliable MD simulations by NNPs.
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