Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes

4 5 Supplementary Information 6 Ki Chang Kwon,^{†a,b} Seokhoon Choi,^{†a} Joohee Lee,^b Kootak Hong,^a Woonbae Sohn,^a Dinsefa 7 Mensur Andoshe,^a Kyoung Soon Choi,^c Younghye Kim,^a Seungwu Han,^a Soo Young Kim,^{*b} 8 and Ho Won Jang*a 9 ^a Department of Materials Science and Engineering, Research Institute of Advanced Materials, 10 Seoul National University, Seoul 08826, Republic of Korea 11 ^bSchool of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, 12 Republic of Korea. 13 ^c Advanced Nano Surface Research Group, Korea Basic Science Institute, Daejeon 34133, 14 Republic of Korea. 15 16 * Corresponding authors, E-mail: Soo Young Kim: sooyoungkim@cau.ac.kr, 17 E-mail: Ho Won Jang: <u>hwjang@snu.ac.kr</u> 18 [†] These authors contributed equally to this work. 19 * These corresponding authors contributed equally to this work. 20

Fig. S1. Optical and electrical characterization of synthesized thin films. (a) Transmittance 1 2 and (b) absorbance spectra of the thin films synthesized with different S/P powder precursor ratios. Transmittance was gradually increased with respect to increase of P mounts. MoS₂ and 3 $P:MoS_2$ (S/P = 3:1) showed the characteristic absorption peaks of MoS₂. When the phosphorus 4 ratio increased, the MoS₂ absorption peak disappeared, indicating that the phosphorus-rich 5 (S:MoP, S/P =1, S/P = 0.33, and P) thin films were metallic. (c) The current-voltage (I-V) 6 sweep data with 0.1 A compliance. The S:MoP (S/P = 0.33 and P) thin films show the metallic 7 behavior, while the MoS_2 (S) and P:MoS₂ (S/P = 3 and S/P =1) thin films show the 8 semiconducting behavior. (d) The magnified I-V curve of dashed region in the (c). The MoS₂ 9 (S) and P:MoS₂ (S/P = 3) thin films clearly showed the unequal rectifying behavior which 10 means semiconducting property. 11 12

1 Fig. S2. XPS wide scan of the thin films synthesized with different S/P powder precursor ratios.

Fig. S3. The XPS atomic ratio of synthesized thin films as a function of the S/P powder
 precursor ratio.

- 1 Fig. S4. AFM images of the thin films synthesized with different S/P powder precursor ratios.
- 2 Nano-granular surfaces were observed in each thin film.

1 Fig. S5. AFM images with line profiles of the thin films synthesized with different S/P powder 2 precursor ratios. The thickness of the synthesized thin films decreased from ~ 20 to ~ 13 nm 3 when P atoms were completely substituted into the MoS₂ atomic structure.

- 1 Fig. S6. Surface analysis of synthesized thin films with 5 different regions. The average RMS
- 2 roughness values of MoS₂ and S:MoP (S/P=0.33) are 4.74 and 2.21 nm, respectively. MoS₂(S)

1 **Fig. S7.** (a)–(c) The low-magnification transmission electron microscopy (TEM) images of the 2 thin films synthesized with different S/P powder precursor ratios. (d)–(f) The selected area 3 electron diffraction (SAED) patterns of the thin films synthesized with different S/P powder 4 precursor ratios. The SAED patterns of the MoS₂ thin films showed the MoS₂ (002) plane. The 5 SAED patterns significantly changed into MoP (100) and MoP (001) planes with the 6 introduction of phosphorus into the MoS₂ atomic structure.

Fig. S8. The high-resolution TEM images of the thin films synthesized with different S/P
 powder precursor ratios. The surface of the thin films was gradually smoothed with an increase

3 in the S/P powder precursor ratio.

1 Fig. S9. (a) Electrochemical (EC) performances of the synthesized thin films on Au electrode.

2 (b) Tafel plots from the linear portion of the EC measurement. (c) The electrochemical3 impedance spectroscopy measurements. (d) The faradaic efficiency measurements of the4 synthesized thin films transferred onto Au electrodes.

1 **Fig. S10.** The cyclic voltammetric curves of (a) MoS_2/p -Si and (b) S:MoP (S/P = 0.33)/p-Si 2 photocathodes. The statistical results of (c) current density at 0 V, (d) potential vs. RHE @ 10 3 mA/cm², and (e) RMS roughness values for the MoS₂ and S:MoP (S/P = 0.33) thin films.

The incident-photon-to-current conversion efficiency spectra of the S:MoP/p-Si were recorded at an applied potential of 0 V vs. RHE, as shown in Supplementary Fig. S11. Among the tested photocathodes, the photocathode with a S:MoP (S/P = 0.33) layer exhibited the highest efficiency of around 80% in the wavelength range of 410–720 nm. The linear-sweep voltammetry curves show that the PEC properties of the S:MoP/p-Si photocathodes depended on the S/P powder precursor ratios and it was necessary to determine an optimum S/P ratio.

8 Fig. S11. Incident-photon-to-current conversion efficiency measurements of each thin film
9 catalyst/p-Si photocathode.

Fig. S12. The flat band and band-banding diagrams of (a) n-MoS₂ (S)/p-Si, and (b) S:MoP (S/P = 0.33)/p-Si heterojunction photocathodes.

1 Tab	le S1. Electrochemica	l catalytic	properties of the	thin films sy	ynthesized on A	u electrodes.
-------	-----------------------	-------------	-------------------	---------------	-----------------	---------------

~

Electrodes	Potential (V) @ 10 mA/cm ²	Potential (V) @ 20 mA/cm ²	Tafel slope (mV/dec)
bare Au	- 0.492	- 0.546	157.83
MoS ₂ (S)	- 0.407	- 0.450	112.36
P:MoS ₂ (S/P=3)	- 0.341	- 0.375	95.67
P:MoS ₂ (S/P=1)	- 0.234	- 0.255	67.34
S:MoP (S/P=0.33)	- 0.233	- 0.255	69.98
S:MoP (P)	- 0.254	- 0.276	80.89

No.	Sample	Measured	Synthesis	η* at	Tafel slope	Ref.
	type	Electrode	method	10 mA/cm ²	(mV/dec)	
1	grain type	Ti foil	thermal CVD	117 mV	50	1
2	nano- particle	glassy carbon	air ambient calcination	125 mV	54 - 83	2
3	nano- particle	Ti foil	solution-phase synthesis	110 mV	45	2
	porous MoP S	Ti foil	thermal annealing	90 mV	50	5
4	mirco- particle	glassy carbon	grinding	150 mV	56	4
5	sponge (3D)	glassy carbon	solution synthesis	105 mV	126	5
6	MoS _{2(1-X)} P _X solid solution	glassy carbon	MoS ₂ + red-P solid solution	150 mV	57	6
7	nanosheets	glassy carbon	hydrothermal	43 mV	34	7
This work	S:MoP thin film	Au	thermal CVD (thermolysis)	233 mV	70	
		<i>p</i> -Si		- 207 mV	32	-

Table S2. Electrochemical catalytic properties of the thin films synthesized on Au electrodes.

3 *Overpotential.

1 Supplementary Information References

- 2 1. J. Kibsgaard and T. F. Jaramillo, Angew. Chem. 2014, 126, 14661.
- 3 2. Z. Xing, Q. Liu, A. M. Asiri and X. Sun, Adv. Mater. 2014, 26, 5702.
- 4 3. J. M. McEnaney, J. C. Crompton, J. F. Callejas, E. J. Popczun, A. J. Biacchi, N. S. Lewis 5 and R. E. Schaak, *Chem. Mater.* **2014**, *26*, 4826.
- 6 4. T. Wang, K. Du, W. Liu, Z. Zhu, Y. Shao and M. Li, J. Mater. Chem. A 2015, 3, 4368.
- 7 5. C. Deng, F. Ding, X. Li, Y. Guo, W. Ni, H. Yan, K. Sun and Y.-M. Yan, J. Mater. Chem.
 8 A 2016, 4, 59.
- 9 6. R. Ye, P. del Angel-Vincente, Y. Liu, M. J. Arellano-Jimenez, Z. Peng, T. Wang, Y. Li, B.
- 10 I. Yakobson, S.-H. Wei, M. J. Yacaman and J. M. Tour, Adv. Mater. 2016, 28, 1427.
- 11 7. P. Liu, J. Zhu, J. Zhang, P. Xi, K. Tao, D. Gao and D. Xue, ACS Energy Lett. 2017, 2, 745.