Supporting Information

Chemisorption Manipulation by Adjusting the Carrier Concentration of the Adsorbent and Its Application to Adsorbate Identification

Gyuweon Jung^{1,2‡}, Kangwook Choi^{1‡}, Suyeon Ju^{3‡}, Jaehyeon Kim¹, Wonjun Shin⁴, Seongi Lee³, Gyuho Yeom¹, Ryun-Han Koo¹, Young-Chang Joo^{3,5}, Woo Young Choi¹, Seungwu Han³, and Jong-Ho Lee^{1,5*}

¹Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea

²School of Transdisciplinary Innovations, Seoul National University, Seoul 08826, Republic of Korea

³Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea

⁴ Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon

16419, Republic of Korea

⁵Ministry of Science and ICT, Sejong 30121, Republic of Korea

[‡] G. Jung, K. Choi, and S. Ju contributed equally to this work.

* Corresponding author. Tel.: +82-2-880-1727; Fax: +82-2-882-4658.

E-mail address: jhl@snu.ac.kr (J.-H. Lee)

This file contains:

Supporting Information Figure S1-S13, Table S1, and Note S1-2

CONTENTS

Supplementary Figures

To investigate the effect of $V_{\rm M}$ modulation on the carrier concentration of the adsorbent, we additionally fabricated devices with various channel lengths (*L*) (Figure S2a). We then measured the resistance of these devices while varying the $V_{\rm M}$ (Figure S2b). The obtained resistance can be expressed as follows:

Figure S1. Key fabrication processes of the device.

Figure S2. Experimental demonstration of the carrier controllability of In₂O₃ adsorbent.

Figure S3. Current measurement of In_2O_3 , SnO_2 , and CuO adsorbents as a function of V_M .

Figure S4. Scanning electron microscopy (SEM) images of In₂O₃, SnO₂, and CuO adsorbents.

Figure S5. Grazing incidence X-Ray diffraction (GIXRD) pattern of In₂O₃, SnO₂, and CuO adsorbents.

Figure S6. X-ray photoelectron spectroscopy (XPS) spectra of the In_2O_3 , SnO_2 , and CuO adsorbents.

Figure S7. Cyclic transient behavior, response time and recovery times of the device with In_2O_3 to NO_2 gas.

Figure S8. Transient response behavior of the device with In₂O₃ to NO₂ gas.

Figure S9. Cyclic response behavior of the device with In₂O₃ to NO₂ gas.

Figure S10. Long-term stability behavior of the device with In₂O₃ to NO2 gas.

Figure S11. I_R vs. V_M curve of TGS-2602 sensor manufactured by Figaro corporation.

Figure S12. S vs. $V_{\rm M}$ curves of In₂O₃ sensor for varying concentration of NO₂, NO, H₂S, and NH₃ gases.

Figure S13. $logS_M/logS_0$ vs. V_M curves of In₂O₃ sensor for varying concentrations of NO₂, NO, H₂S, and NH₃ gases.

Supplementary Table

Table S1. Adsorption energy (E_{ads}) of NO₂ gas on 18 sites of In₂O₃ (111) surface.

Supplementary Note

Note S1. Method for experimentally demonstrating the carrier controllability of an In_2O_3 adsorbent

Note S2. Description of the TGS-2602 sensor used in the experiment (Figaro Corp.)

Supporting Fig. 1. Key fabrication processes of the device for manipulating chemisorption.

Supporting Fig. 2. (a) 3D schematic image of the device. (b) Resistance of In_2O_3 adsorbent versus channel length (L) in various V_{MS} . (c) Changes in electron concentration of adsorbent depending on V_{M} .

Supporting Fig. 3. Current flow (I_R) in (a) In₂O₃, (b) SnO₂, and (c) CuO adsorbents as a function of V_M .

Supporting Fig. 4. Scanning electron microscope (SEM) image of (a) In₂O₃, (b) SnO₂, and (c) CuO adsorbents.

Supporting Fig. 5. Grazing incidence X-Ray diffraction (GIXRD) pattern of (a) In₂O₃, (b) SnO₂, and (c) CuO adsorbents.

Supporting Fig. 6. High-resolution (a) In_{3d} and (b) O_{1s} core level X-ray photoelectron spectroscopy (XPS) spectra of the In_2O_3 adsorbent. High-resolution (c) Sn_{3d} and (d) O_{1s} core level XPS spectra of the SnO₂ adsorbent. High-resolution (a) Cu_{2p} and (b) O_{1s} core level XPS spectra of the CuO adsorbent.

Supporting Fig. 7. Cyclic transient behavior of the device with In₂O₃ at *V*_M of (a) 5 V, (b) 0 V, and (c) -5 V to 500 ppb NO₂ gas. (d) Response and recovery times of the device with In₂O₃ to 500 ppb NO₂

Supporting Fig. 8. Transient response behavior of the device with In₂O₃ to 500 ppb NO₂ gas at (a) 100 (b) 180, and (c) 260 °C.

Supporting Fig. 9. Cyclic S behavior of the device with In₂O₃ to 500 ppb NO₂ gas.

Supporting Fig. 10. Long-term stability behavior of the device with In₂O₃ to 500 ppb NO₂ gas.

Supporting Fig. 11. $I_{\rm R}$ vs. $V_{\rm M}$ curve of TGS-2602 sensor manufactured by Figaro corporation.

Supporting Fig. 12. *S* vs. *V*^M curves of In₂O₃ sensor for varying concentrations of (a) NO₂, (b) NO, (c) H₂S, and (d) NH₃ gases.

Supporting Fig. 13. log*S*_M/log*S*₀ vs. *V*_M curves of In₂O₃ sensor for varying concentrations of (a) NO₂, (b) NO, (c) H₂S, and (d) NH₃ gases.

Site	e-rich	Pristine	e-deficient
А	-0.617	-0.149	-0.098
В	-0.895	-0.953	-0.130
С	-0.244	-0.078	-0.168
D	-1.388	-1.436	-0.556
Е	-0.515	-0.129	-0.194
F	-1.388	-1.436	-0.556
G	-0.646	-0.151	-0.033
Н	-0.331	-0.138	-0.217
Ι	-1.388	-1.436	-0.556
J	-0.657	-0.244	-0.207
K	-0.837	-0.850	-0.048
L	-1.387	-1.435	-0.556
М	-0.674	-0.217	-0.078
Ν	-0.764	-0.341	-0.230
0	-0.483	-0.084	-0.138
Р	-0.458	-0.193	-0.022
Q	-0.833	-0.845	-0.127
R	-1.390	-1.437	-0.328

Supporting Table 1 Adsorption energy (E_{ads}) of NO₂ gas on 18 sites of In₂O₃ (111) surface.

Supporting Note 1

To investigate the effect of $V_{\rm M}$ modulation on the carrier concentration of the adsorbent, we additionally fabricated devices with various channel lengths (*L*) (Figure S2a). We then measured the resistance of these devices while varying the $V_{\rm M}$ (Figure S2b). The obtained resistance can be expressed as follows:

$$R_{total} = R_{contact} + \rho \frac{L}{tW}$$

where, $R_{contact}$, ρ , t, and W represent the contact resistance, resistivity, thickness, and width, respectively. The resistivity of the adsorbent at various $V_{\rm M}$ values can be obtained from the slopes of the graphs shown in Figure S2b. The resistivity can be expressed as

$$\rho = \frac{1}{en\mu}$$

where e, n, μ represent the electron charge, electron density, and mobility. As shown in Figure S2c, which presents the electron density extracted from the above equation, the carrier concentration of the adsorbent can be controlled by adjusting the $V_{\rm M}$.

Supporting Note 2

Most commercially available resistive gas sensors are not designed to control the carrier concentration in the adsorbent through the voltage applied to the heater terminal. However, in certain sensors, the heater and adsorbent are coupled, allowing for a slight adjustment in carrier concentration of adsorbent by applying voltage to the heater. The TGS-2602 sensor (Figaro Corp.) allows the carrier concentration of the adsorbent to be slightly adjusted by the heater terminal.