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Supporting Fig. 1. Key fabrication processes of the device for manipulating 

chemisorption.  

 

 

 

Supporting Fig. 2. (a) 3D schematic image of the device. (b) Resistance of In2O3 adsorbent 

versus channel length (L) in various VMs. (c) Changes in electron concentration of 

adsorbent depending on VM.  
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Supporting Fig. 3. Current flow (IR) in (a) In2O3, (b) SnO2, and (c) CuO adsorbents as a 

function of VM. 

 

 

Supporting Fig. 4. Scanning electron microscope (SEM) image of (a) In2O3, (b) SnO2, and 

(c) CuO adsorbents. 

 

 

Supporting Fig. 5. Grazing incidence X-Ray diffraction (GIXRD) pattern of (a) In2O3, (b) 

SnO2, and (c) CuO adsorbents. 
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Supporting Fig. 6. High-resolution (a) In3d and (b) O1s core level X-ray photoelectron 

spectroscopy (XPS) spectra of the In2O3 adsorbent. High-resolution (c) Sn3d and (d) O1s 

core level XPS spectra of the SnO2 adsorbent. High-resolution (a) Cu2p and (b) O1s core 

level XPS spectra of the CuO adsorbent. 
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Supporting Fig. 7. Cyclic transient behavior of the device with In2O3 at VM of (a) 5 V, (b) 

0 V, and (c) -5 V to 500 ppb NO2 gas. (d) Response and recovery times of the device with 

In2O3 to 500 ppb NO2  
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Supporting Fig. 8. Transient response behavior of the device with In2O3 to 500 ppb NO2 

gas at (a) 100 (b) 180, and (c) 260 ℃.  

 

 

 

 

Supporting Fig. 9. Cyclic S behavior of the device with In2O3 to 500 ppb NO2 gas. 
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Supporting Fig. 10. Long-term stability behavior of the device with In2O3 to 500 ppb NO2 

gas. 

 

 

 

 

Supporting Fig. 11. IR vs. VM curve of TGS-2602 sensor manufactured by Figaro 

corporation.  
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Supporting Fig. 12. S vs. VM curves of In2O3 sensor for varying concentrations of (a) NO2, 

(b) NO, (c) H2S, and (d) NH3 gases.  
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Supporting Fig. 13. logSM/logS0 vs. VM curves of In2O3 sensor for varying concentrations 

of (a) NO2, (b) NO, (c) H2S, and (d) NH3 gases.  

 

  

-6 -4 -2 0 2 4 6
0

1

2

3

lo
g

S
M

/l
o

g
S

0  
 50  30

 20  10

VM (V)

H2S conc. (ppm) NH3 conc. (ppm)

c d

-6 -4 -2 0 2 4 6

0

1

2

3

4

lo
g

S
M

/l
o

g
S

0

 
 500

 300

 200

 100

VM (V)
-6 -4 -2 0 2 4 6

0

1

2
 

 500

 300

 200

 100

VM (V)

lo
g

S
M

/l
o

g
S

0
a b

NO2 concentration (ppb) NO concentration (ppb)

-6 -4 -2 0 2 4 6
0

1

2

3

lo
g

S
M

/l
o

g
S

0  
 500  300

 200  100

VM (V)VM (V)



Supporting Table 1 Adsorption energy (Eads) of NO2 gas on 18 sites of In2O3 (111) surface.  

Site e-rich Pristine e-deficient 

A -0.617 -0.149 -0.098 

B -0.895 -0.953 -0.130 

C -0.244 -0.078 -0.168 

D -1.388 -1.436 -0.556 

E -0.515 -0.129 -0.194 

F -1.388 -1.436 -0.556 

G -0.646 -0.151 -0.033 

H -0.331 -0.138 -0.217 

I -1.388 -1.436 -0.556 

J -0.657 -0.244 -0.207 

K -0.837 -0.850 -0.048 

L -1.387 -1.435 -0.556 

M -0.674 -0.217 -0.078 

N -0.764 -0.341 -0.230 

O -0.483 -0.084 -0.138 

P -0.458 -0.193 -0.022 

Q -0.833 -0.845 -0.127 

R -1.390 -1.437 -0.328 

 

 

  



Supporting Note 1  

To investigate the effect of VM modulation on the carrier concentration of the adsorbent, we 

additionally fabricated devices with various channel lengths (L) (Figure S2a). We then 

measured the resistance of these devices while varying the VM (Figure S2b). The obtained 

resistance can be expressed as follows: 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡 + 𝜌
𝐿

𝑡𝑊
 

where, 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡 , 𝜌 , 𝑡 , and 𝑊  represent the contact resistance, resistivity, thickness, and 

width, respectively. The resistivity of the adsorbent at various VM values can be obtained from 

the slopes of the graphs shown in Figure S2b. The resistivity can be expressed as 

𝜌 =
1

𝑒𝑛𝜇
 

where 𝑒, n, 𝜇 represent the electron charge, electron density, and mobility. As shown in Figure 

S2c, which presents the electron density extracted from the above equation, the carrier 

concentration of the adsorbent can be controlled by adjusting the VM. 

 

Supporting Note 2  

Most commercially available resistive gas sensors are not designed to control the carrier 

concentration in the adsorbent through the voltage applied to the heater terminal. However, in 

certain sensors, the heater and adsorbent are coupled, allowing for a slight adjustment in carrier 

concentration of adsorbent by applying voltage to the heater. The TGS-2602 sensor (Figaro 

Corp.) allows the carrier concentration of the adsorbent to be slightly adjusted by the heater 

terminal. 

 


