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Best practices in machine learning for chemistry
Statistical tools based on machine learning are becoming integrated into chemistry research workflows. We discuss 
the elements necessary to train reliable, repeatable and reproducible models, and recommend a set of guidelines 
for machine learning reports.

Nongnuch Artrith, Keith T. Butler, François-Xavier Coudert, Seungwu Han, Olexandr Isayev, 
Anubhav Jain and Aron Walsh

Chemistry has long-benefited from 
the use of models to interpret 
patterns in data, from the Eyring 

equation in chemical kinetics, the scales 
of electronegativity to describe chemical 
stability and reactivity, to the ligand-field 
approaches that connect molecular structure 
and spectroscopy. Such models are typically 
in the form of reproducible closed-form 
equations and remain relevant over the 
course of decades. However, the rules of 
chemistry are often limited to specific 
classes of systems (for example, electron 
counting for polyhedral boranes) and 
conditions (for example, thermodynamic 
equilibrium or a steady state).

Beyond the limits where simple analytical 
expressions are applicable or sophisticated 
numerical models can be computed, statistical 
modelling and analysis are becoming valuable 
research tools in chemistry. These present 
an opportunity to discover new or more 
generalized relationships that have previously 
escaped human intuition. Yet, practitioners of 
these techniques must follow careful protocols 
to achieve levels of validity, reproducibility, 
and longevity similar to those of established 
methods.

The purpose of this Comment is to suggest 
a standard of ‘best practices’ to ensure that 
the models developed through statistical 
learning are robust and observed effects are 
reproducible. We hope that the associated 
checklist (Fig. 1 and Supplementary Data 1)  
will be useful to authors, referees, and readers 
to guide the critical evaluation of, and provide 
a degree of standardization to, the training 
and reporting of machine learning models. 
We propose that publishers can create 
submission guidelines and reproducibility 
policy for machine-learning manuscripts 
assisted by the provided checklist. We hope 
that many scientists will spearhead this 
campaign and voluntarily provide a machine 
learning checklist to support their papers.

The growth of machine learning and 
making it FAIR
The application of statistical machine 
learning techniques in chemistry has a long 

history1. Algorithmic innovation, improved 
data availability, and increases in computer 
power have led to an unprecedented growth 
in the field2,3. Extending the previous 
generation of high-throughput methods, and 
building on the many extensive and curated 
databases available, the ability to map 
between the chemical structure of molecules 
and materials and their physical properties 
has been widely demonstrated using 
supervised learning for both regression  
(for example, reaction rate) and classification 
(for example, reaction outcome) problems. 
Notably, molecular modelling has benefited 
from interatomic potentials based on 
Gaussian processes4 and artificial neural 
networks5 that can reproduce structural 
transformations at a fraction of the cost 
required by standard first-principles 
simulation techniques. The research 
literature itself has become a valuable 
resource for mining latent knowledge using 
natural language processing, as recently 
applied to extract synthesis recipes for 
inorganic crystals6. Beyond data-mining, the 
efficient exploration of chemical hyperspace, 
including the solution of inverse-design 
problems, is becoming tractable through 
the application of autoencoders and 
generative models7. Unfortunately, the lack 
of transparency surrounding data-driven 
methods has led some scientists to question 
the validity of results and argue that the field 
faces a “reproducibility crisis”8.

The transition to an open-science 
ecosystem that includes reproducible 
workflows and the publication of 
supporting data in machine-readable 
formats is ongoing within chemistry9. In 
computational chemistry, reproducibility 
and the implementation of mainstream 
methods, such as density functional theory, 
have been investigated10. This, and other 
studies11, proposed open standards that 
are complemented by the availability of 
online databases. The same must be done 
for data-driven methods. Machine learning 
for chemistry represents a developing 
area where data is a vital commodity, but 
protocols and standards have not been 

firmly established. As with any scientific 
report, it is essential that sufficient 
information and data is made available for 
a machine learning study to be critically 
assessed and repeatable. As a community, 
we must work together to significantly 
improve the efficiency, effectiveness, and 
reproducibility of machine learning models 
and datasets by adhering to the FAIR 
(findable, accessible, interoperable, reusable) 
guiding principles for scientific data 
management and stewardship12.

Below, we outline a set of guidelines 
to consider when building and applying 
machine learning models. These should 
assist in the development of robust models, 
providing clarity for manuscripts, and 
building the credibility needed for statistical 
tools to gain widespread acceptance and 
utility in chemistry.

Guidelines when using machine  
learning models
1. Data sources. The quality, quantity 
and diversity of available data impose an 
upper limit on the accuracy and generality 
of any derived model. The use of static 
datasets (for example, from established 
chemical databases) leads to a linear 
model construction process from data 
collection → model training. In contrast, 
dynamic datasets (for example, from guided 
experiments or calculations) lead to an 
iterative model-construction process that 
is sometimes referred to as active learning, 
with data collection → model training → 
use model to identify missing data → repeat. 
Care must be taken with data selection in 
both regimes.

Most data sources are biased. Bias 
can originate from the method used 
to generate or acquire the data, for 
example, an experimental technique that 
is more sensitive to heavier elements, or 
simulation-based datasets that favour 
materials with small crystallographic unit 
cells due to limits on the computational 
power available. Bias can also arise from the 
context of a dataset compiled for a specific 
purpose or by a specific sub-community, 
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as recently explored for reagent choice 
and reaction conditions used in inorganic 
synthesis13. A classic example of the perils 
of a biased dataset came on 3 November 
1948, when The Chicago Tribune headline 
declared ‘Dewey Defeats Truman’ based on 
projecting results from the previous day’s 
U. S. presidential election. In truth, Truman 
defeated Dewey (303–189 in the Electoral 
College). The source of the error? The use 
of phone-based polls at a time when mostly 
wealthy (and Republican-leaning) citizens 
owned phones. One can imagine analogous 
sampling errors regarding chemical datasets, 
where particular classes of ‘fashionable’ 
compounds such as metal dichalcogenides 
or halide perovskites may feature widely,  
but do not represent the diversity of  
all materials.

It is important to identify and discuss 
the sources and limitations of a dataset. 
Bias may be intended and desirable, for 
example, in the construction of interatomic 

potentials from regions of a potential energy 
surface that are most relevant14, but any 
bias, or attempts at its mitigation, should be 
discussed.

Databases often evolve over time, with 
new data added (continuously or by batch 
releases). For reasons of reproducibility, 
it is essential that these databases use 
some mechanism for version control (for 
example, release numbers, Git versioning, 
or timestamps) as part of the metadata and 
maintain long-term availability to previous 
versions of the database.

We recommend listing all data sources, 
documenting the strategy for data selection, 
and including access dates or version 
numbers. If data is protected or proprietary, 
a minimally reproducible example using a 
public dataset can be an alternative.

2. Data cleaning and curation. Raw datasets 
often contain errors, omissions, or outliers. 
It is common for databases to contain over 

10% of erroneous data. Indeed, one study 
found that 14% of the data describing the 
elastic properties of crystals in the Materials 
Project is unphysical15. Cleaning steps 
include removing duplicates, entries with 
missing values, incoherent or unphysical 
values, or data type conversions. Data 
curation may also have been performed 
before publication of the original dataset. 
This cleaning of the data can also include 
normalization and homogenization, where 
several sources are combined. Attention 
should be given to the characterization of 
possible discrepancies between sources, 
and the impact of homogenization on 
derived machine learning models. The 
dramatic effect of data quality on model 
performance and the importance of careful 
data curation has been highlighted in the 
closely related field of cheminformatics16,17. 
One seminal study showed examples of 
how accumulation of database errors and 
incorrect processing of chemical structures 

Checklist for reporting and evaluating machine learning models

1. Data sources

1a. Are all data sources listed and publicly available?

1b. If using an external database, is an access date or version number provided?

1c. Are any potential biases in the source dataset reported and/or mitigated?

2. Data cleaning

2a. Are the data cleaning steps clearly and fully described, either in text or as a code pipeline?

2b. Is an evaluation of the amount of removed source data presented?

2c. Are instances of combining data from multiple sources clearly identified, and potential issues mitigated? 

3. Data representations

3a. Are methods for representing data as features or descriptors clearly articulated, ideally with software implementations?

3b. Are comparisons against standard feature sets provided? 

4. Model choice

4a. Is a software implementation of the model provided such that it can be trained and tested with new data?

4b. Are baseline comparisons to simple/trivial models (for example, 1-nearest neighbour, random forest, most frequent class) provided?

4c. Are baseline comparisons to current state-of-the-art provided? 

5. Model training and validation

5a. Does the model clearly split data into different sets for training (model selection), validation (hyperparameter opimization), and testing (final evaluation)?

5b. Is the method of data splitting (for example, random, cluster- or time-based splitting, forward cross-validation) clearly stated? 
      Does it mimic anticipated real-world application?

5c. Does the data splitting procedure avoid data leakage (for example, is the same composition present in training and test sets)?  

6. Code and reproducibility 

6a. Is the code or workflow available in a public repository?

6b. Are scripts to reproduce the findings in the paper provided?

Fig. 1 | A suggested author and reviewer checklist for reporting and evaluating machine learning models. This proposed checklist is also provided as 
Supplementary Data 1.
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could lead to significant losses in the 
predictive ability of machine learning 
models18. When errors are identified 
in public databases, it is important to 
communicate these to the dataset maintainer 
as part of the research process.

The ability of a statistical model to be 
‘right for the wrong reasons’ can occur when 
the true signal is correlated with a false 
one in the data. In one notable example, a 
high-accuracy model was trained to predict 
the performance of Buchwald−Hartwig 
cross-coupling19. The findings prompted the 
suggestion that almost the same accuracy 
could be achieved if all features in the dataset 
are replaced with random strings of digits20.

We recommend describing all cleaning 
steps applied to the original data, while also 
providing an evaluation of the extent of data 
removed and modified through this process. 
As it is impossible to check large databases 
manually, the implementation and sharing 
of semi-automated workflows integrating 
data curation pipelines is crucial.

3. Data representation. The same type of 
chemical information can be represented 
in many ways. The choice of representation 
(or encoding) is critical in model building 
and can be as important for determining 
model performance as the choice of machine 
learning method. It is therefore essential 
to evaluate different representations 
when constructing a new model. For the 
representation of molecules and extended 
crystals, various approaches have been 
developed. Some capture the global features 
of the entire molecule or crystallographic 
unit cell, while others represent local 
features such as bonding environments or 
fragments, and some combine both aspects. 
Both hand-crafted descriptors, which make 
use of prior knowledge (and are often 
computationally efficient), and general 
learned descriptors (unbiased but usually 
computationally demanding) can be used. 
In chemistry, it is beneficial if the chosen 
representation obeys physical invariants 
of the system, such as symmetry21. While 
there is merit in developing new approaches, 
comparison with established methods (both 
in accuracy and cost) is advisable so that 
advantages and disadvantages are clear.

We recommend that the methods 
used for representing data are stated and 
compared with standard feature sets. It is 
advisable to draw from the experience of 
published chemical representation schemes, 
and their reference implementations in 
standard open libraries such as RDKit 
(https://www.rdkit.org), DScribe (https://
singroup.github.io/dscribe), and Matminer 
(https://hackingmaterials.lbl.gov/matminer) 
before attempting to design new ones.

4. Model choice. Many flavours of machine 
learning exist, from classical algorithms such 
as the ‘support-vector machines’, ensemble 
methods like ‘random forests’, to deep 
learning methods involving complex neural 
network architectures. High accuracy in 
tasks involving chemical problems has been 
reported for graph-based neural networks 
designed to represent bonding interactions 
between elements22,23. Transfer-learning 
techniques make it possible to train superior 
models from the smaller datasets that are 
common in chemistry, with one success case 
being the retraining of a general-purpose 
interatomic potential based on a small 
dataset of high-quality quantum mechanical 
calculations24.

However, the sophistication of a model 
is unrelated to the appropriateness for a 
given problem: higher complexity is not 
always better. In fact, model complexity 
often comes with the cost of reduced 
transparency and interpretability. The use 
of a six-layer neural network to predict 
earthquake aftershocks25 was the subject of 
vigorous online debate, as well as a formal 
rebuttal26 demonstrating that a single neuron 
with only two free parameters (as opposed 
to the 13,451 of the original model) could 
provide the same level of accuracy. This 
case highlights the importance of baselines 
that include selecting the most frequent 
class (classification), always predicting the 
mean (regression), or comparing results 
against a model with no extrapolative 
power, such as a 1-nearest-neighbour, which 
essentially ‘looks up’ the closest known 
data point when making a prediction. In 
cases where machine learning alternatives 
for conventional techniques are proposed, 
a comparison with the state-of-the-art 
is another important baseline test and a 
general measure of the success of the model.

We recommend justifying your model 
choice by including baseline comparisons 
to simpler — even trivial — models, as well 
as the current state-of-the-art. A software 
implementation should be provided so that 
the model can be trained and tested with 
new data.

5. Model training and validation. Training 
a robust model must balance underfitting 
and overfitting, which is important for both 
the model parameters (for example, weights 
in a neural network) and hyperparameters 
(for example, kernel parameters, activation 
functions, as well as the choice and settings 
of the training algorithm). Three datasets 
are involved in model construction and 
selection. A training set is used as an 
optimization target for models to learn 
from for a given choice of hyperparameters. 
An independent validation set is used to 

detect overfitting during training of the 
parameters. The model hyperparameters are 
optimized against the performance on the 
validation set. A test set of unseen data is 
then used to assess the accuracy of the final 
model and again to detect overfitting. These 
three sets can be formed from random splits 
of the original dataset, or by first clustering 
the data into similar types to ensure a 
diverse split is achieved. In estimating the 
training accuracy, the mean-squared errors 
are usually inspected and reported, but it 
should be confirmed that the accuracy is 
achieved uniformly over the whole dataset.

The computational intensiveness of the 
training process should also be reported 
as the utility of the approach to others 
will depend on the data and resource 
required. For example, sequence-based 
generative models are a powerful approach 
for molecular de novo design but training 
them using recurrent neural networks is 
currently only feasible if one has access to 
state-of-the-art graphics processing units 
and millions of training samples27. Following 
conventional terminology, the validation set 
is only used during training, whereas the 
independent test set is used for assessing a 
trained model prior to application. However, 
the accuracy of a trained model on an 
arbitrary test set is not a universal metric for 
evaluating performance.

The test set must be representative of the 
intended application range. For example, 
a model trained on solvation structures 
and energies under acidic conditions may 
be accurate on similar data, but not be 
transferable to basic conditions. Reliable 
measures of test accuracy can be difficult to 
formulate. One study assessed the accuracy 
of machine learning models trained to 
predict steel fatigue strength or critical 
temperature of superconductivity using 
random cross-validation or clustered by a 
diversity splitting strategy28. In the latter 
scenario, the model accuracies dropped 
substantially (2–4× performance reduction). 
The models were extremely fragile to the 
introduction of new and slightly different 
data, to the point of losing any predictive 
power.

Methods of validation that aim to 
test extrapolative (versus interpolative) 
performance are being developed either 
by excluding entire classes of compounds 
(known as leave-class-out selection or 
scaffold split) for testing28, or by excluding 
the extreme values in the dataset for 
testing29. Another industry standard 
approach is time-split cross-validation30, 
where a model is trained on historical data 
available at a certain date and tested on data 
that is generated later, simulating the process 
of prospective validation.
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We recommend stating how the training, 
validation, and test sets were obtained, as 
well as the sensitivity of model performance 
with respect to the parameters of the 
training method, for example, when training 
is repeated with different random seeds or 
ordering of the dataset. Validation should be 
performed on data related to the intended 
application.

6. Code and reproducibility. There is a 
reproducibility crisis across all fields of 
research. If we set aside cases of outright 
misconduct and data fabrication, the 
selective reporting of positive results 
is widespread. Going deeper, data 
dredging (p-hacking) is a manipulation 
technique to find outcomes that can be 
presented as statistically significant, thus 
dramatically increasing the observed effect. 
‘Hypothesizing after the results are known’ 
(HARKing) involves presenting a post-hoc 
hypothesis in a research report as if it were, 
in fact, an a priori hypothesis. To strengthen 
public trust in science and improve the 
reproducibility of published research, it is 
important for authors to make their data and 
code publicly available. This goes beyond 
purely computational studies and initiatives 
like the ‘dark reactions project’ to show the 
unique value of failed experiments that have 
never been reported in literature31.

The first five steps require many 
choices to be made by researchers to 
train meaningful machine learning 
models. While the reasoning behind these 
choices should be reported, this alone 
is not sufficient to meet the burden of 
reproducibility32. Many variables that are 
not typically listed in the methods section 
of a publication can play a role in the final 
result – the devil is in the hyperparameters. 
Even software versions are important as 
default variables often change. For large 
developments, the report of a standalone 
code, for example in the Journal of Open 
Source Software, may be appropriate. It 
is desirable to report auxiliary software 
packages and versions required to run the 
reported workflows, which can be achieved 
by listing all dependencies, by exporting 
the software environment (for example, 
conda environments) or by providing 
standalone containers for running the code. 
Initiatives are being developed to support 
the reporting of reproducible workflows, 
including https://www.commonwl.org, 
https://www.researchobject.org and https://
www.dlhub.org.

We recommend that the full code or 
workflow is made available in a public 
repository that guarantees long-term 
archiving (for example, an online repository 
archived with a permanent DOI). Providing 
the code not only allows the study to be 
exactly replicated by others, but to be 
challenged, critiqued and further improved. 
At the minimum, a script or electronic 
notebook should be provided that contains 
all parameters to reproduce the results 
reported.

maintaining high digital standards
These new adventures in chemical research 
are only possible thanks to those who 
have contributed to the underpinning 
techniques, algorithms, codes, and packages. 
Developments in this field are supported by 
an open-source philosophy that includes the 
posting of preprints and making software 
openly and freely available. Future progress 
critically depends on these researchers being 
able to demonstrate the impact of their 
contributions. In all reports, remember to 
cite the methods and packages employed 
to ensure that the development community 
receives the recognition they deserve.

The suggestions put forward in this 
Comment have emerged from interactions 
with many researchers, and are in line with 
other perspectives on this topic33,34. While 
there is great power and potential in the 
application and development of machine 
learning for chemistry, it is up to us to 
establish and maintain a high standard of 
research and reporting. ❐

Editor’s note: This article has been 
peer-reviewed.
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