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Abstract. Plasma etching is an essential technology in semiconductor fabrication,

enabling precise nanoscale patterning. For high-aspect-ratio channel hole etching in 3D

NAND flash memory, cryogenic etching using hydrogen fluoride (HF) gas shows great

potential. This process often leads to the deposition of ammonium hexafluorosilicate

(AFS) on sidewalls, which critically impacts surface diffusion. Understanding such

phenomena requires accurate atomistic modeling, and while density functional theory

(DFT) provides reliable and accurate results, its significant computational cost makes it

challenging to apply to large-scale or dynamic simulations. As a promising alternative,

neural network potentials (NNPs) provide DFT-level accuracy at a fraction of the

computational cost. In this study, we develop a fine-tuned NNP based on the

pretrained SevenNet-0 model to simulate HF diffusion on AFS surfaces. Although

SevenNet-0 is trained on a broad chemical space and exhibits great generalization

capabilities, it requires further refinement to accurately capture the complex energy

landscape occurring during cryogenic etching, particularly for configurations far from

equilibrium. To address this, we fine-tune the SevenNet-0 model using a minimal DFT

dataset. The resulting fine-tuned NNP demonstrates superior accuracy and stability

in molecular dynamics simulations compared to both the NNP trained from scratch

and the SevenNet-0 model. Our analysis reveals that the additive gas IF5 enhances HF

diffusivity by reducing chain formation and lowering the diffusion barrier. This work

underscores the potential of fine-tuned NNPs for simulating complex etching processes,

offering valuable insights for advancing semiconductor manufacturing.

1. INTRODUCTION

Plasma etching has become a cornerstone technology in semiconductor fabrication,

especially as the demand for device miniaturization and high integration continues

to grow. The growing needs led to the introduction of reactive ion etching (RIE), a

technique that enables anisotropic etching by leveraging ions, which precisely remove
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential2

material in the vertical direction, and radicals, which facilitate selective chemical

reactions. These advancements in plasma etching have driven the development of

nanoscale patterning and high aspect-ratio etching. [1, 2, 3]

One of the most critical applications of plasma etching is in 3D NAND flash

memory fabrication, particularly during the channel hole etching step, where alternating

silicon oxide (SiO2) and silicon nitride (SiNx) layers are etched with high precision and

depth [4, 5]. The depth of these etched channel holes directly determines the stack

height of NAND flash and integration density. As the aspect ratio of these channel

holes increases, significant issues arise such as profile deformation and reduced etch

rates caused by aspect ratio dependent etching (ARDE), which can negatively affect

process efficiency and reliability [6, 7, 1].

Cryogenic etching, also known as low-temperature etching, has been introduced as

a potential solution to such challenges in plasma etching [8, 9, 10, 11, 12]. Enhanced

etch characteristics of cryogenic etching have been attritubted to two critical aspects of

channel hole etching: chemical reaction at the etch front and neutral transport on the

sidewall. At the etch front, low temperatures reportedly enhance the physisorption of

etchants or reaction catalysts, thereby accelerating chemical reactions [13, 14, 9, 15, 10].

Despite the reduced thermal energy under cryogenic conditions, which decreases the

occurrence of chemical reactions, the kinetic energy of radicals and ions generated in

the plasma can still enhance reactivity, as previous studies suggested [16]. On the

sidewall, cryogenic conditions improve both Knudsen transport and surface diffusion,

with the latter likely dominating as the primary transport mechanism in profiles with

small feature sizes [16]. Indeed, lowering the substrate temperature below 0 ◦C has

been shown to improve the etch rate of SiO2 during the fabrication of the channel

hole [10]. Furthermore, transitioning from fluorocarbon (CFx)-based gases to hydrogen

fluoride (HF) gas as the etchant under these cryogenic conditions has demonstrated even

greater improvements in etch efficiency [17, 12].

Experimental and computational studies have shown that during etching with

HF, byproducts such as ammonia (NH3) and silicon tetrafluoride (SiF4) react to

form ammonium hexafluorosilicate ((NH4)2SiF6, AFS), which deposits on the sidewall

surface [18, 19, 20, 12]. AFS is known to be highly stable under cryogenic conditions,

resisting decomposition and altering the surface diffusion characteristics. Also, additive

gases such as iodine pentafluoride (IF5) may also be used to enhance cryogenic etching

characteristics [21]. Despite these facts, experimental studies on cryogenic etching

remain underdeveloped, largely due to the technical challenges of operating under

cryogenic conditions and the limitations of current measurement equipment.

To overcome these experimental limitations, studies utilizing computational

simulations have been conducted. Related research includes modeling the role of

physisorption under cryogenic conditions [22], profiling simulation of cryogenic etching

processes [23, 24], and exploring neutral transport associated with ARDE in high-aspect-

ratio structures [25, 26, 27]. While there are a few studies on low-temperature etching

from an atomistic perspective [13], further research in this area remains necessary.
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential3

For atomistic modeling of surface systems like AFS surfaces, computational

simulations often employ density functional theory (DFT). However, DFT-based

simulations of processes such as molecular dynamics (MD) or nudged elastic band

(NEB) [28, 29] are computationally prohibitive due to their intensive resource

requirements. To address these challenges, neural network potentials (NNPs) have

emerged, enabling rapid calculations with high accuracy. Nonetheless, constructing

NNPs remains challenging, as the preparation of training datasets must adequately

capture interactions among etchants, additives, and surfaces, as well as the

configurations that emerge during the etching process.

Recently, pretrained universal NNPs [30, 31, 32, 33] have emerged as a

promising solution, significantly reducing the time-intensive process of developing

tailored NNPs, which typically involves repeated dataset optimization and extensive

experimentation [34]. One of the major advantages of pretrained universal NNPs is their

ability to generalize across a wide range of applications with minimal dependency on the

specifics of the training dataset. This versatility stems from their training on extensive

and diverse datasets, making them applicable to a broad spectrum of systems. However,

configurations encountered in cryogenic etching processes can deviate significantly from

the equilibrium crystal structures on which pretrained models are usually trained.

This discrepancy increases the potential for prediction errors in configurations far from

equilibrium, which are commonly observed in cryogenic etching.

To address this challenge, fine-tuning pretrained models using system-specific data

has proven to be an effective strategy [35, 36]. Fine-tuning allows the pretrained NNP

to adapt to datasets that capture the unique chemical environments and off-equilibrium

dynamics characteristic of cryogenic etching. This process enhances the ability of the

model to accurately predict key behaviors. By leveraging the computational efficiency

of pretrained models while improving their accuracy for specialized systems, fine-tuning

significantly reduces both computational costs and development time. Consequently,

fine-tuning enables more reliable simulation of cryogenic etching, particularly for

investigating diffusion behaviors in these complex processes. Since diffusion is governed

by atomic interactions, accurately capturing energy and force is crucial to modeling

surface diffusion, especially in cryogenic conditions. Energy determines the stability of

diffusing molecules, while force directly influences their movement. Additionally, stress

plays a role in ensuring the stability of the simulated surface, which indirectly affects

diffusion behavior.

In this study, we focus on atomistic modeling of transport properties of HF etchants

during the 3D NAND channel hole etching process. Particularly, we put emphasis

on surface diffusion on the sidewall surface due to its critical role in small-feature

fabrication. We analyze the effects of key process parameters, including temperature and

additive gases, on surface diffusivity. Given the importance of AFS in modifying sidewall

properties, our modeling efforts are concentrated on AFS surfaces to provide insights

into surface diffusion under realistic etching conditions. Furthermore, by comparing

cases with and without IF5 additive gases, we aim to elucidate their influence on surface
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential4

diffusion and overall etching performance. In this work, we specifically investigate IF5

as an example of an additive gas. While other additive gases are not explicitly tested,

the same methodology can be applied to study their effects in future work.

2. Methods

2.1. Pretrained SevenNet-0 model

We utilize SevenNet-0 (version 11July2024 [37]), a pretrained universal NNP trained

using the SevenNet [30], which is based on the NequIP [38] architecture, as a starting

model for fine-tuning. SevenNet-0 has been trained on the MPtraj dataset from

Materials Project database [39, 31] without any splitting, resulting in the model learning

an extensive amount of DFT calculation data, encompassing 89 elements, 145,923

materials, and a total of 1,580,395 structures. The hyperparameters of SevenNet-0 are

primarily adopted from ref. [30, 40]. The cutoff radius is set to 5 Å, with a complexity

based on a maximum degree of spherical harmonics (lmax = 2) and five interaction layers.

The number of channels for each spherical harmonics degree is set to 128 channels for

0e, 64 channels for 1e, and 32 channels for 2e features. As a result, the model comprises

842,440 trainable model parameters.

SevenNet-0 demonstrates high accuracy with a relatively small number of

parameters, as supported by the Matbench Discovery benchmark results [41]. It achieves

excellent generalization over a broad chemical space, making it a robust choice for diverse

Figure 1. Schematic illustration for the workflow of this study.
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential5

applications. The training results show high accuracy, achieving a mean-absoulte-

error (MAE) of 11 meV/atom, 41 meV/Å, and 2.78 kB for energy, force, and stress,

respectively.

2.2. DFT and NNP calculation

The DFT calculations for this study are performed using the Vienna ab initio Simulation

Package (VASP) [42]. The Perdew-Burke-Ernzerhof (PBE) functional [43] is employed as

the exchange-correlation functional, and version 52 of the VASP PBE pseudopotentials

is used to ensure compatibility with the pretrained data and to facilitate seamless

comparisons with SevenNet-0. Spin-unpolarized calculations are conducted with a

plane-wave basis set cutoff energy of 500 eV. For Brillouin zone sampling, Γ-point

calculations are performed.

MD simulations and structure relaxation calculations using NNPs, including

SevenNet-0, are carried out with the Large-scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS) [44] and the Atomic Simulation Environment (ASE) [45]. SevenNet

explicitly incorporates van der Waals interactions through an efficient implementation

of Grimme’s D3 dispersion correction with Becke-Johnson (BJ) damping [46, 47]. By

using this feature, we train the NNP exclusively with the PBE functional database and

subsequently apply the D3 correction in atomistic simulation. This approach enables

the NNP to achieve results corresponding to the PBE-D3 level of theory calculation. For

comparison, DFT calculations are conducted at the same PBE-D3 level with BJ damping

for direct comparison with the NNP results. All MD simulations are conducted as NVT

simulations using the Nose-Hoover thermostat, with a time step of 1 fs. For structural

relaxation, both DFT and NNP calculations consider a structure to be converged to a

minimum if the maximum atomic force is less than 0.03 eV/Å.

2.3. Modeling surface diffusion on profile sidewall

Figure 2. Schematic diagram of channel hole and ammonium hexafluorosilicate (AFS)

system on sidewall.
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential6

To simulate the surface diffusion behavior of the etchant gas and additive gas on

the sidewall during cryogenic etching, we use the crystalline AFS structure (Fig. 2).

Experimentally, three phases of AFS have been identified: α (cubic), β (trigonal), and

γ (hexagonal) [48, 49, 50]. Although AFS formation has been experimentally confirmed

in plasma etching and atomic layer etching processes through XPS spectra [20, 51], the

specific AFS phase has not been reported. Since the α and β-phases involve disordered

hydrogen atoms bonded to an ammonium ion (NH+
4 ), making it difficult to construct

a definitive crystal structure, we select the relatively simple γ-phase as our modeling

system.

The unit cell of the γ-phase AFS structure consists of 2 fluorosilicate (SiF2−
6 ) anions

and 4 NH+
4 cations, comprising a total of 34 atoms. From this structure, we construct

a slab structure exposing the (001) surface. To achieve this, a 2×2×1 supercell is

generated from the unit cell, and a 15 Å vacuum is added to form the slab structure.

During structure optimization and molecular dynamics calculations, one bottom layer,

approximately 4 Å thick, is fixed to ensure stability.

In the case of inserting gas onto a slab structure, the amount of gas for 1 monolayer

(1 ML) is defined as follows. The maximum pair distance between atoms within a

molecule is set as the 1 ML thickness. Using the PACKMOL [52] package, the maximum

number of molecules that can be inserted within the given tolerance is determined as

the 1 ML quantity of the molecule. The tolerance is set to 2.38 Å (first peak of H–H

pair), which is the largest value of the first peaks among H–H, H–F, and F–F in the

radial distribution function (RDF) obtained from a 10 ps NVT MD simulation of HF

liquid at 250 K using SevenNet-0.

3. RESULTS AND DISCUSSION

3.1. Data efficiency of fine-tuning

3.1.1. Fine-tuning SevenNet-0 To fine-tune the pretrained SevenNet-0 model, we

generate atomic structures for the training set using SevenNet-0 NVT MD simulations

conducted over a short duration of 10 ps at 400 K. We consider two systems: (1) an

AFS slab with 1 ML of HF molecules, and (2) an AFS slab with a 1 ML of IF5 additive

gas along with 1 ML of HF molecules. We intentionally set the temperature at 400 K,

which is higher than the typical cryogenic etching temperature, to capture diverse and

dynamic configurations, enhancing the robustness and accuracy of the fine-tuned model.

From the 10 ps MD trajectories of each system, we sample 51 structures at

200 fs intervals and perform DFT single-point calculations to construct the training set.

Additionally, to improve the accuracy of HF molecule physisorption energy predictions,

we also include DFT relaxation path trajectory for a single HF molecule, which

comprises 6 structures. In total, the training set contains 108 structures. The training

set that we prepared is minimal, as our goal is to fine-tune the well-trained SevenNet-0

model, making such a small dataset sufficient for achieving effective fine-tuning.
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential7

Fine-tuning starts with the pretrained model parameters of SevenNet-0. Model

hyperparameters are all same with pretrained SevenNet-0. A warm-up learning rate

scheduler is employed, with a maximum learning rate of 0.0001. The fine-tuning process

consists of 400 epochs with Adam optimizer. In this study, we utilize the Huber loss

function, the same as used in the training of SevenNet-0, defined in Eq. (1):

LHuber(ŷ, y, δ) =

{
1
2
(ŷ − y)2, |ŷ − y| ≤ δ,

δ ·
(
|ŷ − y| − 1

2
δ
)
, otherwise.

(1)

Here, δ is specified as 0.01. The total loss function incorporates energy, force, and

stress contributions as follows in Eq. (2):

L =
1

M

M∑
i=1

LHuber

(
Êi

Ni

,
Ei

Ni

, δ

)

+
λF

3M
∑M

i=1 Ni

M∑
i=1

Ni∑
j=1

3∑
k=1

LHuber

(
F̂i,j,k, Fi,j,k, δ

)
+

λS

6M

M∑
i=1

6∑
l=1

LHuber

(
Ŝi,l, Si,l, δ

)
. (2)

Here, M represents the number of samples in a batch, and Ni denotes the number

of atoms in the i-th sample. The terms Ei, Fi,j,k, and Si,l correspond to the reference

DFT total energy, the k-th component of the atomic force of the j-th atom, and the l-th

component of the stress tensor, respectively. Their predicted counterparts, Êi, F̂i,j,k,

and Ŝi,l, are outputs from the NNP model. For loss computation, energy, force, and

stress values are expressed in units of eV, eV/Å, and kbar, in that order. The weight

parameters λF and λS control the contributions of the force and stress terms to the total

loss, with values set to 1 and 0.01. Loss function and its parameters are same with those

used in the SevenNet-0 training.

To evaluate the data efficiency of fine-tuning, a scratch NNP is also developed for

comparison. This baseline model is trained from scratch using the same training data

and the same number of 400 epochs. However, due to the high initial error levels typically

observed in training from scratch, the learning rate is increased to 0.001 to facilitate

faster convergence. In this work, we specifically use a cosine annealing with warm-

up scheduler as our learning rate scheduler. This approach starts with an extremely

low learning rate (0) and gradually increases it to the maximum learning rate (0.0001

in this study) over the course of 50 epochs. After reaching this peak, the learning

rate then gradually decreases back to 0 following a cosine function. Starting from 0

prevents the model’s weights from deviating too sharply from the pretrained SevenNet-

0 at the beginning of training, ensuring more stable fine-tuning. Fig. 3(a) shows the

total training Huber loss of the fine-tuned NNP and the scratch NNP on the training

set as a function of epochs. Notably, the scratch NNP trained for 400 epochs exhibits

even a higher loss on the training data compared to SevenNet-0. Additionally, the fine-

tuned NNP achieves both a significantly smaller loss than the scratch NNP and faster
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential8

Figure 3. Comparison of the accuracy between scratch NNP and fine-tuned NNP.

(a) Training Huber loss per epoch for scratch NNP and fine-tuned NNP trained on a

dataset of 108 structures sampled from a 10 ps MD simulation. The blue dashed line

represents the Huber loss of SevenNet-0 on the same training set. (b) Energy RMSE

on the training set (108 structures sampled from a 10 ps MD simulation) for scratch

NNP and fine-tuned NNP, both trained for 400 epochs. The total MD simulation

time used for sampling the training dataset is progressively reduced to demonstrate

the efficiency of fine-tuned NNP.

loss convergence, demonstrating the efficiency of the fine-tuning approach. Correlation

parity plot of fine-tuned NNP can be found in Fig. S4.

We further investigate the efficiency of fine-tuning by reducing the size of the

training set sampled from SevenNet-0 MD simulations. Specifically, instead of sampling

by 200-fs interval from the full 10 ps trajectory (51 structures from each MD trajectory;

total 108 structures), we prepare training sets by shortening the maximum MD

simulation time for sampling to 1 ps (6 structures from each MD trajectory; total

18 structures) and 200 fs (2 structures from each trajectory; total 10 structures),

respectively. We evaluate the prediction errors of the NNPs trained on the reduced

datasets by using a consistent test set composed of 108 structures, which includes
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential9

Table 1. Energy, force, and stress RMSE for 108 structures: comparison of NNPs

trained on different training set sizes (in units of meV/atom, eV/Å, and kbar).

Total MD time

for sampling

Scratch NNP

(E/F/S)

Fine-tuned NNP

(E/F/S)

10 ps 24 / 0.41 / 2.10 1 / 0.07 / 0.86

1 ps 45 / 0.73 / 4.28 2 / 0.13 / 1.12

200 fs 50 / 0.96 / 4.58 2 / 0.15 / 1.52

structures sampled from the full 10 ps MD trajectory, as shown in Fig. 3(b). The fine-

tuned NNP shows a low energy root-mean-squared error (RMSE) of only 2 meV/atom,

even when the total MD simulation time for sampling is drastically reduced to 200 fs. In

contrast, the scratch NNP exhibits a significantly higher energy RMSE of 50 meV/atom

under the same conditions, highlighting its inability to effectively capture the underlying

potential energy surface (PES) with a limited dataset. These results underscore the

robustness of fine-tuned NNP, as it consistently achieves low prediction errors across

various dataset sizes, while the accuracy of scratch NNP declines significantly as the

size of the training set becomes smaller. The detailed errors for energy, force, and

stress, expressed in units of meV/atom, eV/Å, and kbar are specified in Table 1. Test

set results are also presented in the Table S2.

3.1.2. MD simulation stability analysis We evaluate whether the developed NNPs,

including SevenNet-0, can accurately and stably perform MD simulations for analyzing

the diffusion behavior of the sidewall during the cryogenic etching process. NVT MD

simulations are conducted on a system comprising an AFS slab with 1 ML of IF5 and 1

ML of HF at 400 K with each developed NNP. To assess stability beyond the 10 ps of

simulation time used for training data generation, we perform 100 ps MD simulations.

DFT single-point calculations are performed on the MD simulation trajectories of

each NNP to compare their accuracy of predictions. As shown in Fig. 4, the fine-

tuned NNP achieves smaller energy errors compared to SevenNet-0, demonstrating

improved prediction accuracy for the diffusion process through fine-tuning. In contrast,

the scratch NNP fails to perform stable MD simulations, even though the system is

explicitly included in its training set. Fig. S1 illustrates the bond lengths of Si–F in

SiF2−
6 and N–H in NH+

4 within the AFS slab as a function of MD simulation time. In the

case of the fine-tuned NNP, the bond lengths remain consistent without bond breaking,

maintaining a stable AFS slab structure. In contrast, for the scratch NNP, Si–F and N–H

bonds break within 500 fs, leading to the unphysical collapse of the AFS slab structure.

Developing an accurate scratch NNP for complex surface simulations typically requires

training sets with both stable and distorted structures of fundamental bulk or molecular

systems [53, 54, 55], and the lack of such knowledge explains the instability in this

scratch NNP case. The fine-tuned NNP, however, starts training within the parameter

space of well-trained SevenNet-0, allowing it to achieve high accuracy for describing
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential10

Figure 4. Energy plots of 100 ps of NNP-MD simulations at 400 K for the system of

AFS slab with 1 ML of IF5 and 1 ML of HF molecules. DFT single-point calculations

are conducted for each NNP-MD trajectory performed by SevenNet-0 and fine-tuned

NNP. We set the most stable structure among the snapshots in each trajectory as the

reference with a relative energy of 0 eV/atom.

such complex PES of the diffusion process. Prediction parity plot for SevenNet-0 on

the pretrained MPtrj dataset is shown in Fig. S5. This indicates that the pretrained

dataset contains a significant number of distorted structures with high energy and high

force. Due to the failure of physical simulations with the scratch NNP, it will no longer

be included in tests from this point onward.

3.2. NNP assessment for diffusion-related properties

3.2.1. HF physisorption energy From this section, we examine whether fine-tuned

NNP achieves improvement in accuracy compared to SevenNet-0 and verify its ability

to accurately describe diffusion-related behaviors. To explore the diffusion behavior of

the HF molecule, it is essential to accurately describe the physisorption energy. Since the

HF molecule continuously undergoes the process of physisorption while diffusing on the

surface, diffusion and physisorption energy are directly correlated. If the physisorption

energy is too large, the molecule may remain confined to the surface, hindering diffusion.

Conversely, if the physisorption energy is too small, the molecule may desorb without

any significant interaction with the surface. Thus, having an appropriate physisorption

energy is critical. To investigate this, the physisorption energy is calculated using

SevenNet-0 and a fine-tuned NNP.

The physisorption energy is evaluated for two systems: (1) AFS slab with a single

HF molecule adsorbed, and (2) AFS slab with 1 ML of IF5 and a single HF molecule

adsorbed. For each case, 10 different configurations are generated, and the physisorption

energy, Ephys, is calculated using the following equation:

Ephys = Eslab+mol − (Eslab + Emolecule) . (3)
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential11

Figure 5. Parity plot comparing the calculated physisorption energy between DFT

and both SevenNet-0 and fine-tuned NNP. Blue markers represent the energies from

SevenNet-0, while orange markers indicate the energies from the fine-tuned NNP.

Circular markers represent cases where a single HF molecule is physisorbed on an

AFS slab system. Triangular markers correspond to cases where a single HF molecule

is physisorbed on an AFS slab system with an additive gas, specifically 1 ML of IF5.

As shown in Fig. 5, SevenNet-0 consistently exhibits overbinding behavior, resulting

in a MAE of 0.32 eV in Ephys. In contrast, the fine-tuned NNP significantly reduces

the overbinding issue, achieving an MAE of 0.097 eV in Ephys. This demonstrates that

the fine-tuning process successfully develops a NNP capable of accurately describing

physisorption phenomena. Notably, the physisorption for systems with the additive gas

of IF5 is weaker compared to the systems with only the AFS slab. The impact of this

observation on diffusion will be further discussed in the following section.

3.2.2. Diffusivity To calculate the diffusivity of HF molecules, we conduct NVT MD

simulations running for 5 ps in the case of DFT and 10 ps for NNP. Calculations

are conducted at four temperatures of 250, 300, and 350 K, and five simulations

are performed for each temperature. Although cryogenic etching is usually done at

temperatures as low as from –20 ℃ to more than –60 ℃ [17, 56, 57, 58], excessively

low temperatures may result in sluggish molecular motion, significantly extending the

required MD simulation time for diffusivity calculation. Considering these factors, the

selected temperature range is deemed appropriate for generating diffusivity plots.

The time-averaged mean squared displacement (MSD) method is employed to

enhance sampling density and reduce fluctuations, thereby improving the linearity of the

MSD curve. [59] To distinguish the diffusivity of the HF etchant only, bond analysis is

conducted on the initial MD snapshot to track only the fluorine atoms belonging to HF.

Equation 4 is used, taking into account only x and y components of the displacement
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential12

Figure 6. Diffusivity of HF molecules. NVT MD simulations were performed for 10

ps at temperatures of 250, 300, and 350 K, with five simulations conducted at each

temperature. Markers represent the average value of ln(D), while solid lines show the

range between the minimum and maximum values. For clarity, results obtained at the

same temperature using different potentials (DFT, SevenNet-0, and fine-tuned NNP)

are slightly shifted laterally in the diagram. For the DFT results, the grey dashed line

represents the temperature dependence of diffusivity, which can be used to calculate

the activation energy.

vectors to extract the surface diffusion term.

MSD(∆t) =
1

N

N∑
i=1

1

N∆t

ttot−∆t∑
t=0

|ri,xy(t+∆t)− ri,xy(t)|2 (4)

where N is the total number of atoms, t the time, ∆t the timestep, ttot the total

simulation time, N∆t the total number of time steps, ri,xy(t) the position vector of the

atom i with x and y components, respectively.

Using the MSD values obtained, the surface diffusivity is calculated by fitting the

least squares to Eq. 5. To isolate surface diffusion effects, the dimensionality is fixed at

2. The MSD data are truncated between 10% and 70% of the total simulation time to

avoid potential noise in the early stages and the effect of fewer samples at later stages.

D =
MSD(∆t)

2d∆t
+Doffset (5)

The results of diffusivity calculations through MD simulations indicate that the

SevenNet-0 generally underestimates diffusivity values compared to DFT (Fig. 6).

However, the fine-tuned NNP shows improvements in the overall distribution of

diffusivity values. At a temperature of 350 K, the fine-tuned NNP completely covers
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential13

the diffusivity range of DFT, while SevenNet-0 almost misses the diffusivity range of

DFT. Here, the average diffusivity value of the fine-tuned NNP is much closer to that

of DFT, while SevenNet-0 shows much larger differences. At a temperature of 300 K,

this trend becomes slightly weaker, but the still fine-tuned NNP shows an average value

closer to DFT, compared to SevenNet-0. At a temperature of 250 K, the diffusivity

distribution of the SevenNet-0 does not overlap with that of DFT at all, whereas the

fine-tuned NNP partially covers the DFT diffusivity range.

To further investigate the discrepancies in diffusivity distributions between the DFT

and NNP results at 250 K, HF trajectories were analyzed from their initial positions

for the cases with highest and lowest diffusivity (Fig. S2). Overall, NNP trajectories

showed a greater tendency for molecules to remain near their initial positions compared

to DFT, a trend observed in both the SevenNet-0 and fine-tuned NNP models. This

discrepancy may be attributed to several factors such as finite-size effects arising from

the small cell size used for comparison with DFT, the relatively short MD simulation

time of 10 ps, and the insufficient sampling of HF diffusivity due to the limited number

of ensembles.

Furthermore, the fine-tuned NNP model exhibits a larger spread in fast and

slow diffusion events compared to SevenNet-0. This spread originates from variations

in HF molecular movement across different MD runs. In particular, some HF

molecules, especially those positioned near the topmost layers with higher mobility, show

significantly greater displacement in certain simulations but remain nearly immobile in

others. Conversely, when HF molecules do not exhibit significant displacement from

their initial positions, the results from SevenNet-0 and the fine-tuned NNP closely

overlap, suggesting that both models capture slow diffusion cases in a similar manner.

Given the limited cell size and short MD duration, these factors contribute to the

observed spread in diffusion behavior. Although increasing the simulation time and

system size would help reduce noise, we maintain these parameters to ensure consistency

with the DFT simulations.

Additionally, to assess the extrapolation capability of the fine-tuned NNP model

in larger systems, we perform MD simulations at 400 K using a system with lateral

dimensions three times larger than the original cell. As shown in Fig. S3, the

overall energy-per-atom trend remains consistent between the small and large systems,

with reduced fluctuations in the larger system. This suggests that the fine-tuned

model successfully generalizes to larger-scale simulations despite differences in periodic

boundary conditions.

3.3. Analysis of diffusion behaviors

To investigate the impact of IF5 additives on the surface diffusion of HF etchants, NVT

MD simulations of 1 ML HF are conducted with and without the presence of 1 ML IF5

using the fine-tuned NNP. The results, shown in Fig. 7, indicate that the diffusivity

of HF increases at low temperatures when IF5 is present. Furthermore, the diffusion
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential14

Figure 7. Effect of IF5 on diffusivity of HF molecules using fine-tuned NNP. NVT

MD simulations are performed for 10 ps at temperatures of 250, 300, and 350 K, with

five simulations conducted at each temperature. Markers represent the average value

of ln(D), while solid lines show the range between the minimum and maximum values.

For clarity, results obtained at the same temperature using different systems (AFS slab

and AFS slab+IF5 1ML) are slightly shifted laterally in the diagram.

barrier is found to decrease from 0.097 to 0.079 eV.

Figure 8. Average length of HF chain during MD using fine-tuned NNP.

To understand the mechanistic origins of this phenomenon, changes in the length of
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Atomistic simulation of HF diffusion on ammonium fluorosilicate surface using neural network potential15

the HF chain are analyzed during the MD process at 250 K (Fig. 8). To define the HF

chain in the given system, HF molecules are first identified and the nearest neighbors H

and F of each HF molecule are examined. If both nearest neighbors are HF molecules,

it is classified as part of a chain; if one or more neighbors are NH+
4 , SiF

2−
6 , or IF5, it is

classified as a node. The criterion for hydrogen bonding between HF molecules is set at

1.9 times the equilibrium length of the HF bond. The length of the HF chain is defined

as the total number of HF molecules connecting one node to another.

It is well known that HF molecules in the liquid state tend to form one-dimensional

chains through intermolecular bonding [60, 61]. When only 1 ML of HF is present, the

average chain length at 250 K exceeds 3, forming relatively long chains similar to those

in the liquid state. In contrast, when IF5 is present, HF molecules can also form H–F

bonds with IF5, resulting in shorter average chain lengths. HF molecules in shorter

chains, especially those not bonded to other HF molecules, can break their relatively

weaker bonds with IF5 easily and move more freely. This explains the observed increase

in diffusivity under these conditions.

4. Conclusion

In this study, our objective was to construct an NNP to provide an enhanced atomistic

understanding of the diffusion of HF on AFS surfaces, a critical process in cryogenic

plasma etching for 3D NAND flash memory fabrication. Using the pretrained SevenNet-

0 model as a foundation, we developed a fine-tuned NNP tailored to accurately simulate

HF diffusion dynamics. Starting from the pretrained SevenNet-0 model parameters,

we successfully developed a stable and accurate NNP capable of reliably simulating

the diffusion process even with a limited amount of training data. By fine-tuning

the model with a minimal dataset from DFT calculations, we achieved substantial

improvements in accuracy for atomic configurations encountered during the diffusion

process. Notably, the fine-tuned model reduced the energy RMSE from approximately

24 meV/atom (as seen in the scratch NNP) to around 1 meV/atom, highlighting a

significant enhancement in predictive performance. Compared to the scratch NNP,

the fine-tuned model demonstrated superior stability and accuracy in MD simulations,

effectively capturing surface diffusion behaviors even with limited training data.

Our analysis revealed that the presence of additive gases like IF5 enhances HF

diffusivity by reducing chain formation and lowering the diffusion barrier, facilitating

more effective etching. These findings highlight the potential of fine-tuned NNPs as

a computationally efficient surrogate model for modeling complex surface interactions

and diffusion behavior in cryogenic etching processes, providing valuable insights into

semiconductor process modeling.
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