Supporting Information: Atomistic simulation of HF etching process of amorphous Si₃N₄ using machine learning potential

Changho Hong,^{†,§} Sangmin Oh,^{†,§} Hyungmin An,[†] Purun-hanul Kim,[†] Yaeji Kim,[‡] Jae-hyeon Ko,[‡] Jiwoong Sue,[‡] Dongyean Oh,[‡] Sungkye Park,[‡] and Seungwu Han^{*,†,¶}

†Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
‡SK hynix Inc., Icheon-si, Gyeonggi-do 17336, Republic of Korea
¶Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
§C.H. and S.O. equally contributed to this work.

> E-mail: hansw@snu.ac.kr Phone: +82 (02)880 1541

		_
Pair of elements	$r_{\rm c}^{\rm in}$ (Å)	$r_{\rm c}^{\rm out}$ (Å)
Si-Si	1.94	2.05
Si-N	1.34	1.42
Si-H	1.31	1.39
Si-F	1.39	1.47
N-N	0.95	1.0
N-H	0.89	0.95
N-F	1.14	1.21
H-H	0.64	0.68
H-F	0.8	0.84
F-F	1.21	1.28

Table S1: Cutoff distances for each element pair used in the switching function.

SF type	e_c	e_1	e_2	r_c (Å)	η (Å ⁻²)	λ	ζ	$\# \mbox{ of SFs}$
G^2	Si, N	Si, N	-	6.0	0.003214, 0.035711,	-	-	16
					0.071421, 0.124987,			
					0.214264, 0.357106,			
					0.714213, 1.42842			
G^2	Si, N	H, F	-	4.5	0.003214, 0.071421,	-	-	8
					0.214264, 0.714213			
G^2	H, F	Si, N,	-	4.5	0.003214, 0.071421,	-	-	16
		H, F			0.214264, 0.714213			
G^4	Si, N	Si, N	Si, N	4.5	0.000357, 0.028569,	1, 2, 4	-1, 1	54
					0.089277			
G^4	Si, N	Si, N	H, F	4.5	0.000357	1, 2, 4	-1, 1	24
G^4	Si, N	H, F	H, F	4.5	0.000357	1, 2, 4	-1, 1	18
G^4	H, F	Si, N,	Si, N,	4.5	0.000357	1, 2, 4	-1, 1	60
		H, F	H, F					

Table S2: Parameters used in the symmetry functions for each element.

Figure S1: (a–e) Snapshots of high-temperature molecular dynamics (10 000 K) of the slab at t = 0, 0.5, 2, 5, 10 ps.

Figure S2: (a–c) Parity plots of energy, force component, and stress component of the test set. (d) Radial distribution function (RDF) and (e) angular distribution function (ADF) of amorphous Si_3N_4 obtained from the NNP and DFT calculations.

Table S3: Etching yields of H-terminated and pristine amorphous Si_3N_4 (a- Si_3N_4) substrates under various ion incidence conditions.

Incident energy (eV)	Incident angle (°)	Substrate	Yield (Si_3N_4/HF)
20	0	H-terminated	0.040
20	0	Pristine	0.039
50	0	H-terminated	0.067
50	0	0 Pristine	0.071
50	75	H-terminated	0.026
50	Pristine		0.028

Figure S3: Surface profiles of H-terminated and pristine $a-Si_3N_4$ substrates after etching simulations under (a, b) $E_{in} = 20$ eV, $\theta_{in} = 0^\circ$; (c, d) $E_{in} = 50$ eV, $\theta_{in} = 0^\circ$; (e, f) $E_{in} = 50$ eV, $\theta_{in} = 75^\circ$. Panels (a, c, e) show H-terminated cases, while panels (b, d, f) show pristine cases.

Figure S4: (a–e) Atomic density profiles of Si, N, H, and F for surfaces after the etching simulation under $E_{\rm in} = 10, 20, 30, 40, 50$ eV.

Figure S5: Atomic density profiles of surfaces after the etching simulation for areas of 2.0×2.0 nm², 2.8×2.8 nm², and 3.5×3.5 nm² for (a) Si, (b) N, (c) H, and (d) F.

Surface species (i)	Desorption probability Γ_i	Reaction probability r_i, q_i	
Surface species (i)	$(imes 10^{-3} \ \mathrm{nm^2/HF})$	$(imes 10^{-3}~\mathrm{nm^2/HF})$	
SiF ₀	0.77349	20.672	
SiF_1	2.3288	15.570	
SiF_2	9.7272	19.934	
SiF_3	54.605	-	
NH_{0}	6.4533	8.3217	
NH_1	4.8023	8.7203	
NH_2	34.993	-	

Table S4: Desorption probabilities and reaction probabilities for Si and N surface species during steady-state etching, derived from MD simulations.

Figure S6: Desorption probabilities of Si surface species as a function of $E_{\rm in}$ when $\theta_{\rm in} = 0^{\circ}$.