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Atomic energy mapping of neural network potential

Dongsun Yoo ,1 Kyuhyun Lee,1 Wonseok Jeong,1 Dongheon Lee,1 Satoshi Watanabe,2 and Seungwu Han1,*

1Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
2Department of Materials Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan

(Received 12 March 2019; revised manuscript received 25 July 2019; published 3 September 2019)

We investigate the atomic energy mapping inferred by machine-learning potentials, in particular neural
network potentials. We first show that the transferable atomic energy can be defined within the density functional
theory, which means that the core of machine-learning potentials is to deduce a reference atomic-energy function
from the given set of total energies. By utilizing invariant points in the feature space at which the atomic energy
has a fixed reference value, we examine the atomic energy mapping of neural network potentials. Examples
on Si consistently support that NNPs are capable of learning correct atomic energies. However, we also find
that the neural network potential is vulnerable to ‘ad hoc’ mapping in which the total energy appears to be
trained accurately while the atomic energy mapping is incorrect in spite of its capability. We show that the
energy mapping can be improved by choosing the training set carefully and monitoring the atomic energy at the
invariant points during the training procedure. The energy mapping in multicomponent systems is also discussed.
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I. INTRODUCTION

Recently, machine-learning (ML) approaches to develop-
ing interatomic potentials are attracting considerable attention
because they are poised to overcome the major shortcoming
inherent to the classical potential and first-principles method,
i.e., difficulty in potential development and huge computa-
tional cost, respectively. Favored ML models are the neural
network [1–3] and kernel-based models [4,5]. In particular,
the high-dimensional neural network potential (NNP) sug-
gested by Behler and Parrinello [1] is attracting wide in-
terest with applications demonstrated over various materials
encompassing metals [6–8], insulators [9,10], semiconductors
[11,12], and molecular clusters [13].

Based on the original idea, several improvements for NNP
have been also put forward. For instance, genetic algorithms
and CUR decomposition were applied to optimize feature sets
[14–16]. To improve the performance of NNP over complex
training sets, various modifications to the model structure
were also proposed such as stratified NN [17], implanted NN
[18], and a mixture model [19]. Recently, we reported that
typical training sets are biased toward specific configurations,
which undermines stability and transferability of NNP [20].
We also suggested a weighting scheme that can overcome the
sampling bias [20].

While the methodological advances are under rapid
progress as above, the conceptual foundation of NNP is still
elusive, partly due to the black-box nature of the neural
network. Furthermore, most machine-learning potentials in-
cluding NNP infer atomic energies while it is trained over
total energies that are sums of atomic energies, which is
an unconventional machine-learning structure. However, the
learning quality of NNP is examined by total energies and
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their derivatives, and less attention has been paid to the atomic
energy function that is actually learned and inferred by NNP.
Motivated by this, in this paper, we investigate the atomic
energy mapping of NNP.

We show that the core of training procedure in NNP is
to infer the reference atomic energy grounded on the density
functional theory (DFT), from the given relationship between
the structure and total energy. With examples on Si, we
demonstrate that NNP can learn atomic energies correctly but
it is also prone to ad hoc mapping in which the total energy is
trained accurately but the atomic energy mapping is incorrect.

The rest of the paper is organized as follows: the compu-
tational details are provided in the methods section. In the
results and discussion section, we first explicitly show the
existence of atomic energy within DFT. Then, we provide
different examples of atomic energy mapping in the follow-
ing subsections and discuss implications to multicomponent
systems. We then summarize and conclude.

II. METHODS

Throughout the paper, NNPs are trained by using the
in-house code named SIMPLE-NN [21] (https://github.com/
MDIL-SNU/SIMPLE-NN). To represent local environment,
we use atom-centered symmetry functions [22]. The symme-
try function vector G consists of 8 G2 and 18 G4 functions
with the cutoff of 6.0–6.5 Å. Neural networks consist of two
hidden layers and 30 hidden nodes per layer (26-30-30-1
structure). Errors in both total energy and atomic force are
minimized during the training process employing L-BFGS
and Adam optimizers.

All DFT calculations for generating training sets are car-
ried out using Vienna ab initio simulation package (VASP)
[23–25] with the computational setting identical to those in
Ref. [20]. The classical MD simulation on Ni nanocluster
is performed by the LAMMPS package [26]. More details
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on the training set are provided in each example and infor-
mation on the training process such as learning curves and
error distributions are available in the Supplemental Material
[27]. Although the number of structures in the training set
is small compared to other studies (see below), the size is
sufficient because model systems in the present study are
relatively simple and atomic forces as well as total energies
are used in training (see the Supplemental Material [27] for
the convergence of errors against the size of the training set).
We estimate the prediction uncertainty by training NNP five
times with different initial conditions (the initial weights are
randomized and the training set is also randomly selected from
the total dataset each time). The uncertainty is estimated as
one standard deviation in results from the five NNPs.

III. RESULTS AND DISCUSSIONS

A. Existence of transferable atomic energy within DFT

Most ML potentials are based on the representability of the
DFT total energy (EDFT

tot ) as a sum of the atomic energy (Eat)
that depends on the local environment within a certain cutoff
radius (Rc):

EDFT
tot =

∑
i

Eat(Ri; Rc) , (1)

where i is the atom index and Ri is the collection of relative
position vectors of atoms lying within Rc from the ith atom.
For simplicity, we assume a unary system that is large enough
that various cutoff spheres in the following discussions do
not self-overlap under periodic boundary conditions and wave
functions are effectively real valued.

We first scrutinize whether Eq. (1) is justified within DFT.
As is well known, the total energy can be expressed by integra-
tion of the local energy density, although it is not unique [28].
Then, by partitioning the space into nonoverlapping atomic
volumes, one can assign energies to each atom whose sum
equals to the total energy [29,30]. However, existence of the
atomic energy at the DFT level does not necessarily guarantee
that it is transferable to other systems with similar local envi-
ronments, which is essential for machine-learning potentials
based on Eq. (1). As far as we are aware, the transferability
of atomic energies has not been explicitly discussed yet. In
this paper, by invoking locality or ‘nearsightedness’ of the
electronic structure [31], which empowers the O(N ) approach
[32], we formally define Eat(Ri; Rc) within DFT, which de-
pends only on local environment and so is transferable. Below,
we derive Eat(Ri; Rc) from the total energy with a particular
attention to the transferable range.

Within the semilocal density approximation, EDFT
tot can be

expressed in terms of the one-electron density matrix ρ(r, r′)
and the electron density ρ(r) = ρ(r, r):

EDFT
tot = Ekin + EXC + ECoul

= −1

2

∫
∇2

r ρ(r, r′)|r=r′dr′

+
∫

ρ(r)εXC(ρ(r),∇ρ(r))dr

+ 1

2

∫
ρ(r)ρ(r′)
|r − r′| drdr′ −

∑
i

∫
qiρ(r)

|r − ri|dr

+
∑
i> j

qiq j

|ri − r j | , (2)

where the atomic unit is used, εXC is the exchange-correlation
energy density, qi and ri are the ionic charge and position
of the ith atom, respectively. Under the assumption that
O(N ) methods, in particular the divide-and-conquer (DAC)
approach [33,34], work well for given systems, we will ex-
plicitly show that (i) each energy term can be split without any
loss into atomic contributions that are defined locally around
each atomic site, and (ii) the atomic energy depends only on
nearby atoms such that it is transferable to other systems as
long as local environments are maintained.

We start with partitioning the space into atomic cells
without gaps or overlapping (for instance, Voronoi cells). Let
Vi be the cell enclosing the ith atom. We define ρi(r) as
ρi(r) = ρ(r)[r ∈ Vi] where [ …] is the Iverson bracket whose
value is 1 (0) when the logical proposition in the bracket is true
(false). Obviously, ρ(r) = ∑

i ρi(r). It is easily seen that EXC

is the sum of the atomic exchange-correlation energy (EXC,i)
that is obtained by substituting ρi(r) for ρ(r) in the integrand
of EXC. As is assumed in the DAC method [33], the charge
density at a certain point is influenced by only nearby atoms if
the local chemical potential of electrons is fixed. This means
that ρi(r), and hence EXC,i, is affected by atomic arrangements
within a certain cutoff (R1

c) from ri.
Next, we define the total charge density in Vi: ρtot,i(r) =

qiδ(r − ri ) − ρi(r). It is straightforward to show that ECoul can
be expressed as a summation of the atomic Coulomb energy,
ECoul,i, defined as follows:

ECoul,i = 1

2

∑
j �=i

∫
ρtot,i(r)ρtot, j (r′)

|r − r′| drdr′

+ 1

2

∫
ρi(r)ρi(r′)
|r − r′| drdr′ −

∫
qiρi(r)

|r − ri|dr. (3)

The first term on the right-hand side of Eq. (3) is long ranged,
which is incompatible with the finite cutoff. Here we assume
that the electrostatic interaction is effectively screened or
canceled such that it is negligible beyond a certain cutoff
(R2

c). This would be a reasonable assumption in condensed
matters with weak ionic characters. For instance, the short-
ranged NNP works well in partly ionic systems such as
SiO2 [21] and GeTe [11], implying that the Coulomb interac-
tion is approximately short ranged in these materials. (Some
implementations of NNP explicitly describe the long-range
Coulomb potential, separately from short-ranged atomic ener-
gies [35,36].) Thus, we omit the Coulomb interaction between
ρtot,i and ρtot, j if |r j − ri| > R2

c . Since ρi(r) and ρtot,i(r) are
influenced by atoms within R1

c (see above), ECoul,i depends on
atoms inside R1

c + R2
c (neglecting the volume of Vi).

As the last step, we discuss the locality of Ekin. Since
ρ(r, r′) decays exponentially with |r − r′| in insulators and
metals at finite temperatures [32], one can neglect ρ(r, r′)
when |r − r′| is bigger than a cutoff (R3

c), which is utilized
in the density-matrix-based DAC method [34]. Therefore,
for a given position r, ρ(r, r′) is determined by the atomic
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configurations within a cutoff distance (R4
c) from r, which

should be larger than R3
c . With the projected density ma-

trix ρi j (r, r′) = ρ(r, r′)[r ∈ Vi][r′ ∈ Vj], we define the atomic
density matrix ρat,i(r, r′) as follows:

ρat,i(r, r′) = ρii(r, r′) + 1

2

|r j−ri|<R3
c∑

j �=i

ρi j (r, r′) . (4)

It can be shown that ρ(r, r′) = ∑
i ρat,i(r, r′) and ρat,i(r, r′)

depends only on the atomic arrangements within R4
c from the

ith atom (neglecting the volume of Vi). The atomic kinetic
energy is then given in the following:

Ekin,i = −1

2

∫
∇2

r ρat,i(r, r′)|r=r′dr′. (5)

Since the kinetic-energy operator is linear, the sum of the
atomic kinetic energy is equivalent to the total kinetic energy.

Combining the above analyses, the atomic energy of the ith
atom formally derives from the DFT calculations:

Eat,i = Ekin,i + EXC,i + ECoul,i, (6)

and EDFT
tot = ∑

i Eat,i. By evaluating Eat,i in various structures,
one can obtain in principle the atomic energy as a continuous
function of the local environment:

Eat,i −→ EDFT
at (R; Rc) , (7)

where Rc = max(R1
c + R2

c , R4
c ). Note that the atomic energy

is not unique because it depends on the way to define atomic
cells.

The existence of EDFT
at implies that the objective of the

present machine learning is to identify EDFT
at when only total

energies are informed. This is at variance with the conven-
tional view that NNP is merely an interpolation of given
total energies [37,38]. Mathematically, the neural network
has the capability to infer the underlying function when only
sums of function values are provided. (See an example in
Supplemental Material [27] on a piecewise cubic spline and
the first example in Sec. III B.)

To reduce the huge dimension of R and obtain Eat in a com-
putationally feasible way, two approximations are adopted.
First, the cutoff radius is reduced from Rc, which should be
fairly large for high accuracy, to rc that is usually chosen to
be 6–7 Å. This is a reasonable range because the chemical
influence rapidly diminishes beyond this boundary. (One may
have to increase rc or give a separate treatment to incorporate
longer-range interactions such as magnetic interactions or the
effect of charged defects.) Second, the local environment is
described by feature vectors whose dimension is significantly
lower than for R. The popular choices are smooth-overlap-of-
atomic-positions (SOAP) [39] or symmetry function vectors
(G) [22]. These feature vectors also automatically incorporate
rotational and translational invariance inherent to the atomic
energy. Here, we employ the symmetry function. Thus,

EDFT
tot =

∑
i

EDFT
at (Ri; Rc) �

∑
i

ENN
at (Gi; rc) . (8)

The accuracy of NNP therefore hinges on how close ENN
at

obtained through machine learning is to one of reference
EDFT

at ’s over the configurational space spanned by the given

training set. (Note that there are numerous EDFT
at ’s that are all

valid.) However, since ENN
at is fitted to the total energies, rather

than directly to EDFT
at , the ML procedure does not necessarily

guarantee sufficient accuracies in ENN
at . That is to say, ENN

at
can reproduce total energies in the training set precisely but
deviate significantly from EDFT

at . Indeed, we will demonstrate
that NNP is vulnerable to such ad hoc energy mapping, which
leads to incorrect total energies in related configurations and
undermines the transferability of NNP. (The atomic force is
given by Fi = −∑

j ∂Eat, j/∂ri where j ranges over the atoms
within rc from the ith atom. This is also a sum of derivatives of
atomic energy functions. Therefore, fitting atomic forces does
not circumvent ad hoc mapping.)

B. Examples of atomic energy mapping

Even though the existence of EDFT
at was shown formally

in the previous section, the actual calculation of EDFT
at would

be highly expensive. (We note a recent effort to directly train
NNP over atomic energies from DFT [40].) Furthermore,
a direct comparison between ENN

at and EDFT
at is unfeasible

because there exist an infinite number of valid EDFT
at and it

is difficult to know which one is chosen by NNP. This makes
it hard to grade the energy mapping of ENN

at . However, there
are invariant points in the G space at which EDFT

at is uniquely
defined without any degree of freedom. For instance, in the
crystalline Si, all the atoms are equivalent, and so the total
energy per atom is simply equal to EDFT

at for the corresponding
G. Transforming lattice vectors of the unit cell also results in
similar conditions. The invariant G points allow for examining
accuracy of NNPs in mapping the atomic energy.

Below, we investigate the atomic energy mapping of NNP
with four examples. In the first example on a Ni nanocluster,
we employ the classical embedded-atom method (EAM) in
which the atomic energy can be explicitly defined and com-
pared with the NNP results. This demonstrates the ability of
NNP for mapping the atomic energy when only total energies
are provided. The other three examples on Si examine the
atomic energy mapping of NNPs when they are trained over
total energies and forces from DFT calculations, by utilizing
the invariant G points. To be specific, the second and third ex-
amples are about crystalline and surface models, respectively.
These model systems are simple but confirm the capability
of NNP to map the atomic energy at the DFT level. They also
demonstrate the ad hoc mapping that arises from limitations in
the training set. The last example on the Si cluster corresponds
to a more practical situation, showing that the accuracy of
atomic energy mapping depends on the training procedure.

1. Classical potential

First, we examine whether NNP can identify underlying
classical potential when only total energies are provided.
Specifically, we train NNP on the total energy of EAM
potential [41]. The training set consists of MD snapshots
of Ni85 nanocluster at 500 K, sampled in 10-fs interval.
[See Fig. 1(a)]. After training, the root-mean-squared error
(RMSE) is 0.3 meV/atom for the total energy and 0.01 eV/Å
for the atomic force. The atomic energy within EAM is
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FIG. 1. (a) Structure of the Ni85 octahedron that consist of 6
corner, 36 edge, 24 surface, and 19 bulk atoms. (b) Correlation
between atomic energy of EAM and NNP.

defined as follows:

Ei = F

⎛
⎝∑

j �=i

ρ(ri j )

⎞
⎠ + 1

2

∑
j �=i

φ(ri j ) , (9)

where Ei is the atomic energy of atom i, and ri j is the distance
between atoms i and j. In Eq. (9), F is the embedding function
that depends on the sum of pairwise electron densities ρ,
and φ is the pairwise potential. Figure 1(b) compares atomic
energies between EAM and NNP. Good correlations are found
and RMSE for the atomic energy is 25 meV. In particular,
NNP successfully resolves different configurations, namely
corner, edge, surface, and bulk, although only total energies
and atomic forces are informed. This example supports that
NNP can identify the atomic energy function that underlies
the total energy.

2. Si crystal

Next, we train NNP over DFT energies and forces in
crystalline Si. The training (validation) set consists of 350
(150) MD snapshots of the 64-atom cubic supercell under
the NVT condition of 1000 K and the equilibrium volume
at 0 K (sampled in 20-fs interval). After training, RMSE in
the total energy and atomic force is 1 (1) meV/atom and
0.10 (0.11) eV/Å for the training (validation) set, respec-
tively. In addition, total energies and atomic forces of NNP
and reference DFT are highly correlated (see Supplemental
Material [27]). Atomic vibrations during MD give rise to local
expansion or compression. As a result, atomic configurations
around certain Si atoms resemble those in the crystalline phase
under hydrostatic pressures, which forms the equation of state
(EOS) and corresponds to invariant G points explained above.

To show this clearly, we define dNN(G) as the Euclidean
distance in the feature space from a certain G to the nearest
point in the training set (excluding self). Figure 2(a) shows
the distribution of dNN for G’s in the training set, and Fig. 2(b)
displays the training points on the two axis from the principle
component analysis (PCA). The solid disks in Fig. 2(b) cor-
respond to G vectors for fcc Si along the equation of states
(EOS). As can be seen in Fig. 2(a), most of dNN for G’s in
the training set is lower than 0.2. In Figs. 2(b) and 2(c), the
square bracket indicates the range along EOS where dNN is as
low as that of G’s in the training set (lower than 0.2), implying
that G’s inside the square bracket would be learnable although
they do not belong to the training set. Therefore, if atomic

FIG. 2. (a) The distribution of dNN for the training set. (b) The
distribution of G in the training set (dots) and the equation of state
(EOS) (solid disks), projected onto principal component (PC) axes.
(c) The dNN for each point in EOS. In both (b) and (c), the square
bracket indicates the same range for EOS where the dNN is lower than
0.2. (d) The EOS for Si crystal compared between DFT and NNP.
The blue and red solid lines are the average EOS over five NNPs
that are trained with NVT- and NPT-MD snapshots, respectively. The
shades are one standard deviation from the average, corresponding
to the prediction uncertainty. The squared bracket indicates the
volume range where corresponding G’s lie in the proximity of the
training set.

energies are properly mapped, NNP should be able to predict
correctly the energy-volume relation at 0 K.

Figure 2(d) compares EOS inferred by the as-trained NNP
(blue line) with DFT results (black dots). The light shade
means prediction uncertainty evaluated by ensembles of NNP
[42]. The squared bracket indicates the range of the volume
whose G is in close proximity to the training set. Interestingly,
NNP predicts correctly the energy at the equilibrium volume
of DFT, but energies at other volumes significantly deviate
from the DFT curve with errors far bigger than RMSE in the
total energy. That is to say, NNP predicts the total energy
correctly but the atomic energy is markedly wrong, which
corresponds to the ad hoc energy mapping. From the conti-
nuity in Eat, the incorrect energy mapping should affect other
training points neighboring invariant G points, implying that
the ad hoc mapping extends over a significant portion of the
training set.

The ad hoc mapping in this case happens because the
training set consists of structures with a fixed volume. This
condition constrains the local expansion and contraction to
occur concurrently within the same structure. Consequently,
any additional term in the atomic energy that varies linearly
with the volume does not affect the total energy, and so the
slope of EOS at the equilibrium volume of DFT becomes
an arbitrary number. The ad hoc mapping in this case can
be resolved by considering structures with different volumes
or including virial stress in the loss function. For instance,
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FIG. 3. (a) The structure of Si(100)-(2 × 2) slab. The atoms in
bulk and surface regions are marked in blue and red, respectively.
rc is the cutoff radius of symmetry functions. (b) The average of
atomic-energy difference between DFT and NNPs for bulk and
surface groups, plotted against the temperature of the training set.
(c) Scatter plot along principal components (PC) of G vectors in
the training set. (d) Schematic illustration of ad hoc mapping due
to separate groups of training points.

the red line in Fig. 2(d) shows EOS predicted with NNPs
that are trained with MD snapshots from NPT ensembles at
1000 K and zero pressure. During MD, the supercell expands
or shrinks, avoiding the exact cancellation among the local
volume changes. As a result, it is seen that NNPs can predict
the slope and curvature of EOS reasonably.

3. Si slab

In the third example, the training set consists of MD
trajectories of Si(100)-(2 × 2) symmetric slab (128 atoms)
in the NVT condition at a certain temperature between 100
and 1000 K, sampled in 20-fs interval [see Fig. 3(a)]. To
assess the learning quality, we compare atomic energies for
the geometry relaxed at 0 K with DFT. Unlike crystalline Si
in the previous example, the reference EDFT

at is not available
directly. Nevertheless, Si atoms inside the slab (blue atoms)
have neighborhood similar to that in the crystal (see a dashed
circle). Therefore, Eat in this region should be close to the
crystalline EDFT

at at the equilibrium volume [EDFT
at (bulk)].

Since EDFT
tot is available for the whole structure, the average

EDFT
at for the surface region (red atoms) can be obtained

as [EDFT
tot − Nb · EDFT

at (bulk)]/Ns, where Nb and Ns are the
number of atoms in the bulk and surface regions, respectively.
By taking the difference in averaged values of ENN

at and EDFT
at

in each region, one can quantify average mapping errors,
�Ēat(bulk) and �Ēat(surface), respectively.

Figure 3(b) presents �Ēat(bulk) and �Ēat(surface) for
NNPs trained over MD trajectories at different temperatures.
At a low temperature of 100 K, the mapping error is −108
and 76 meV/atom for bulk and surface regions, respectively,

FIG. 4. (a) r−1
g against the temperature of training set and (b) ab-

solute atomic-energy error (bulk) versus r−1
g for the Si slab model.

which is far bigger than RMSE (0.3 meV/atom). This is
another example of ad hoc energy mapping; NNP correctly
predicts the total energy because errors in the atomic energy
mapping cancel with each other. In Fig. 3(b), it is intriguing
that the mapping error gradually decreases as the temperature
in the training set increases, and at the high temperature of
1000 K, the magnitude of mapping errors becomes compara-
ble to RMSE in the total energy (3 meV/atom).

To understand the temperature-dependent mapping error,
we examine in Fig. 3(c) the distribution of training points in
the G space using PCA on the training sets at 100 and 1000 K.
It is seen that at 100 K, the training points corresponding to
the bulk and surface region are well separated. In contrast,
energetic vibrations at 1000 K result in much broader distri-
bution of training points such that bulk and surface regions
are slightly connected. (Other combinations of principal axes
show similar behaviors.) As schematically drawn in Fig. 3(d),
if clusters of training points are separate as in 100 K, the
machine learning is prone to ad hoc mapping because any
canceling offsets give almost the same total energy and atomic
forces. On the other hand, at higher temperatures with every
region connected to some degrees, Eat at intermediate config-
urations helps adjust the energy offset between basins.

Following the above example, training points sampled on
a certain type of structure should be appropriately connected
to avoid the ad hoc mapping [43]. For a systematic analysis,
it would be useful to develop a metric that measures the
connectivity in the G space. To this end, we iteratively carry
out single-linkage clustering of training points, a kind of
hierarchical clustering used in the statistical analysis. (See
Supplemental Material [27] for schematic illustration of the
procedure.) At each step, two clusters with the shortest dis-
tance merge into one. (Initially, every training point represents
an independent cluster.) The intercluster distance, reflecting
dissimilarity between clusters, is set to the minimum Eu-
clidean distance between two points from each cluster. We
define rg as the distance between the two lastly-linked large
clusters whose size is larger than a threshold. Here, the thresh-
old is set to 0.5 times the number of structures in the training
set, but the result is largely insensitive to this value because
the cluster size highly polarizes near the end of iterations.
Since rg approximates the maximum distance among cluster
groups, r−1

g can be regarded as the connectivity of the training
set. Figure 4(a) shows r−1

g against the temperature of training
sets in the slab model. It is seen that r−1

g increases linearly
with the temperature, supporting that the training set is more
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FIG. 5. (a) Si239 nanocluster relaxed at 0 K. (b) Change of RMSE
for energy and force, and mapping errors for surface and bulk regions
of Si(100)-(2 × 2) slab in Fig. 3(a), with respect to the training
epoch.

connected at high temperatures. Figure 4(b) plots �Ēat(bulk)
with respect to r−1

g . It is seen that the mapping error is suffi-
ciently low when r−1

g is larger than a certain cutoff. While the
cutoff rg may vary with system or training set size, it can serve
as a parameter to examine the connectivity quantitatively.

4. Si nanocluster

Albeit simple, the above two cases substantiate the ad
hoc mapping that originates from limitations in the training
set. In practice, a single training set usually encompasses
diverse structures such as bulk, surfaces, and defects, and
chances are that the ad hoc mapping can be avoided in
principle. Nevertheless, the error-cancelling energy offsets as
in Fig. 3(d) still exist, which can go unnoticed if the training
procedure is monitored by RMSE only. To show this, we
generate a training set from MD simulations of a 239-atom Si
nanocluster with Wulff-constructed {100}, {110}, and {111}
facets at 1000–1700 K. [See Fig. 5(a) for the structure relaxed
at 0 K]. The training (validation) set consists of 832 (208) MD
snapshots that are sampled in the interval of 10–20 fs. The
analysis on the connectivity (see above) confirms that training
points are well connected.

In Fig. 5(b), we plot RMSE for the total energy and force
with respect to the training epoch. It also shows �Ēat(bulk)
and �Ēat(surface) for the (100)-(2 × 2) surface model in
Fig. 3(a). The analysis similar to Fig. 2 shows that the G
points in the (100)-(2 × 2) slab model are in the vicinity
of training points, and hence they are learnable. Therefore,
NNP is expected to predict surface and bulk energies in
reasonable agreement with DFT results. In Fig. 5(b), it is
seen that RMSE remains almost constant after about 100
epochs while �Ēat(bulk) and �Ēat(surface) converge at much
slower rates. This indicates a risk in concluding the training
convergence in terms of RMSE and supports Eat at invariant
G points as alternative convergence parameters. Obviously,
if the crystalline structures are included in the training set,
�Ēat(bulk) would converge as fast as RMSE, but this does
not guarantee the proper energy mapping at other training
points. Therefore, we suggest collecting invariant G points as
a separate test set for monitoring the atomic energy mapping,
rather than including them in the training set, at least in the
initial stage of training.

FIG. 6. (a) Average atomic energies of Ge and Te when the
training set encompasses the whole composition range (Ge, Ge3Te,
GeTe, GeTe3, and Te; filled circles), or when the training set includes
only compositions near 1:1 (empty squares). Error bars indicate one
standard deviation in atomic energies for MD snapshots. (b) The
unphysical phase separation results with NNP that is trained over
only compositions near 1:1.

After a sufficient number of epochs, the surface energies
for (100)-(2 × 2), (110)-(2 × 1), and (111)-(2 × 1) slab mod-
els that are fully relaxed by NNP agree with DFT results
within 8%. (The corresponding errors by NNP trained up to
200 epochs are within 20%.) It is intriguing that just one
type of structure (nanocluster) can train NNP over such a
wide range of configurations when the energy mapping is
correct. This implies that NNPs with proper mapping are more
transferable than those with ad hoc mapping, which may con-
tribute to improving the stability of MD simulations [20]. It
will be also useful in developing general-purpose NNPs [44].
Finally, we find that monitoring the energy mapping is helpful
in selecting training parameters such as the regularization
parameter of the neural network.

C. Implications for multicomponent systems

In multicomponent systems, the sum of Eat is uniquely
defined within DFT in the high-symmetry structure (for in-
stance, Eat(Ge)+Eat(Te) in fcc GeTe) such that it can be used
as reference values to test atomic energy mapping of NNP.
However, this also means that relative offsets in Eat among
different chemical species are not uniquely defined. Never-
theless, the offset is not entirely arbitrary because physically
rational distribution of the total energy should limit the atomic
energy to within a certain range. If the training set consists
of only structures with single stoichiometry, the energy offset
among chemical types becomes arbitrary. In the example
of GeTe, Eat (Ge) + � and Eat (Te) − � produce exactly the
same total energies and atomic forces even for unreasonable
values of �. This corresponds to the ad hoc mapping in
multicomponent systems, which can undermine the stability
of MD simulations.

We demonstrate this with the example of GeTe. (The
full description including details on the training set will be
published elsewhere [45].) In Fig. 6(a), the filled circles are
average atomic energies of Ge and Te when the training
set encompasses the whole composition range (Ge, Ge3Te,
GeTe, GeTe3, and Te in solid and liquid phases). It is seen
that the atomic energy changes gradually with the composi-
tional variation. (Nevertheless, this does not mean that atomic
energies are uniquely defined at mixed compositions.) In
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addition, we do not encounter any particular problem during
test simulations on liquid GeTe. On the other hand, the empty
squares are atomic energies when the training set consists of
GeTe with compositions only near 1:1. In comparison with
the atomic energies of the previous NNP, the atomic energies
are assigned with rather unphysical values (Ge energies are
too low while Te energies are too high), which corresponds to
the ad hoc mapping in multicomponent systems. When MD
simulations on liquid GeTe are carried out using this NNP,
we always observe unphysical phase separations as shown in
Fig. 6(b), which is likely to be caused by the ad hoc mapping.

IV. CONCLUSION

In conclusion, we investigated the atomic energy mapping
inferred by neural network potentials. We first showed that
the transferable atomic energy can be defined within DFT.
This implies that the aim of training NNP is to learn the
atomic energy function defined at the DFT level from total
energies, and the transferability of NNP lies in the accuracy
of atomic energy mapping. The invariant G points with the
unique EDFT

at provided ways to examine the atomic energy
mapping. Although we were able to compare atomic energies
between DFT and NNP only for spatial configurations, the
examples in Sec. III B consistently support that NNPs are

capable of learning correct atomic energies even for structures
with nonunique energy decomposition. It was also observed
that NNP is vulnerable to ad hoc mapping due to limitations
in the training set and/or certain choices of computational
procedure. (Classical force fields may not suffer from the ad
hoc mapping because they assume pre-defined mathematical
functions.) The energy mapping can be improved by choosing
the training set carefully and monitoring the atomic energy at
the invariant points during the training procedure. Although
we focused our discussion on NNP, the conclusion is generally
applicable to any machine-learning potentials that are based
on Eq. (1). By clarifying what NNP actually learns, the present
work will contribute to constructing accurate and transferable
machine-learning potentials.
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