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Application of pretrained universal machine-learning in-
teratomic potential for physicochemical simulation of liq-
uid electrolytes in Li-ion battery†

Suyeon Ju,‡a Jinmu You,‡a Gijin Kim,a Yutack Park,a Hyungmin An,a and Seungwu Han∗ab

Achieving higher operational voltages, faster charging, and broader temperature ranges for Li-ion
batteries necessitates advancements in electrolyte engineering. However, the complexity of opti-
mizing combinations of solvents, salts, and additives has limited the effectiveness of both experi-
mental and computational screening methods for liquid electrolytes. Recently, pretrained universal
machine-learning interatomic potentials (MLIPs) have emerged as promising tools for computational
exploration of complex chemical spaces with high accuracy and efficiency. In this study, we evaluated
the performance of the state-of-the-art equivariant pretrained MLIP, SevenNet-0, in predicting key
properties of liquid electrolytes, including solvation behavior, density, and ion transport. To assess its
suitability for extensive material screening, we considered a dataset comprising 20 solvents. Although
SevenNet-0 was predominantly trained on inorganic compounds, its predictions for the properties of
liquid electrolytes showed good agreement with experimental and ab initio data. However, system-
atic errors were identified, particularly in the predicted density of liquid electrolytes. To address this
limitation, we fine-tuned SevenNet-0, achieving improved accuracy at a significantly reduced com-
putational cost compared to developing bespoke models. Analysis of the training set suggested that
the model achieved its accuracy by generalizing across the chemical space rather than memorizing
trained configurations. This work highlights the potential of SevenNet-0 as a powerful tool for future
engineering of liquid electrolyte systems.

1 Introduction

Li-ion batteries (LIBs) have revolutionized modern technology by
powering a wide range of devices, from mobile phones to electric
vehicles.1,2 Among the various components comprising LIBs, the
liquid electrolytes play a crucial role in facilitating ion transport
between the anode and cathode, enabling the charging and dis-
charging cycles.3–7 Commercial formulations often incorporate
lithium hexafluorophosphate (LiPF6) as the Li salt,8 while ethy-
lene carbonate (EC)-based solvents are established as the indus-
try standard due to their ability to form a robust solid electrolyte
interphase (SEI) on graphitic anodes.9 When mixed with linear
carbonates such as dimethyl carbonate (DMC), ethyl methyl car-
bonate (EMC), and diethyl carbonate (DEC), these electrolytes of-
fer the complementary advantages of high salt dissociation from

a Department of Materials Science and Engineering and Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Korea. E-mail: hansw@snu.ac.kr
b Korea Institute for Advanced Study, Seoul 02455, Korea.
† Electronic supplementary information (ESI) available. See DOI:
00.0000/00000000.
‡ These authors contributed equally to this work.

cyclic carbonates with high permittivity, alongside the enhanced
ion mobility and reduced viscosity provided by linear carbon-
ates.10,11 The introduction of vinylene carbonate (VC) as an ad-
ditive has further enhanced SEI stability, with its highly reactive
carbon-carbon double bond that promotes the formation of poly-
meric species.10

While the current recipes of liquid electrolytes satisfy various
requirements, there is still a pressing demand for further opti-
mizing the liquid electrolyte for LIBs to achieve enhanced energy
density, safety, cycle life, and performance across various tem-
peratures.12–14 For example, to increase the operation voltage,
it is necessary to lower the HOMO (Highest Occupied Molecu-
lar Orbital) level of the electrolyte to prevent degradation, or in-
troduce additives to form a stable cathode-electrolyte interphase
(CEI).15,16 On the other hand, incorporating bulky anions can
increase the charging speed by elevating the Li-ion transference
number,17,18 although this results in lower ionic conductivity by
retarding Li-ion movements.19 Lastly, commercial EC-based elec-
trolytes are vulnerable in low-temperature environments, where
the viscosity increases significantly and solidification occurs, low-
ering the ionic conductivity.20 In addition, due to the sluggish
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desolvation of Li ions, charge transfer between the anode and
electrolyte is hindered.21 Switching to ether-based electrolytes22

or utilizing (localized) high-concentration electrolytes23 may re-
solve these problems.

In the above-mentioned cases, selecting optimal formulations
for liquid electrolytes often requires a careful balance between
correlated material properties, such as viscosity and solvation,
which calls for testing of various materials and their combina-
tions. Considering the vast space of organic molecules and the
challenges in measuring physicochemical properties experimen-
tally, atomistic simulations have become highly useful for mate-
rial screening and understanding variations in properties at the
atomic level.24–26 In particular, molecular dynamics (MD) sim-
ulations using classical potentials or density functional theory
(DFT) calculations, have been instrumental in investigating sol-
vation structures and physicochemical properties (i.e., diffusivity
and viscosity) of electrolytes,27–29 as well as interfacial reactions
between electrodes and electrolytes.30–32

However, theoretical studies based on DFT and classical po-
tentials face challenges in computational cost and transferability,
respectively. For example, the high computational cost of DFT
limits simulation size and time to a few hundred atoms and tens
of picoseconds.28,29 This limitation raises concerns that the sim-
ulation may not reach equilibration within the DFT time scale.33

For instance, the residence time of Li and solvent molecules can
extend up to a few tens of nanoseconds,33,34 a time scale DFT
cannot practically achieve. On the other hand, while classical
potentials allow simulations of tens of thousands of atoms over
hundreds of nanoseconds, they sacrifice transferability and gen-
eral accuracy by fitting model parameters to DFT results or ex-
perimental data specific to particular systems. For example, the
charges in OPLS-AA (Optimized Potentials for Liquid Simulations-
All Atom) were scaled by 80% to fit to the experimental Li diffu-
sivities in EC electrolytes.35,36 However, this approach deterio-
rated the diffusivities of both the Li ion and the PF−6 anion in
PC solvent.35 Similar trade-offs on different properties have been
reported in other classical potentials, such as in TraPPE (Trans-
ferable Potentials for Phase Equilibria) force fields,37 which ac-
curately predicted densities but showed more than 20% error in
relative permittivities. Beyond these Class I force fields, more
advanced force fields, such as Class II38 incorporating bond and
angle anharmonicity, and APPLE&P39 (Atomistic Polarizable Po-
tential for Liquids, Electrolytes, and Polymers, Class-III), which
is many-body polarizable, achieve higher accuracy through addi-
tional parameters, but they demand careful parameter tuning and
still suffer from limited transferability.

Over the past decade, data-driven machine learning inter-
atomic potentials (MLIPs) have gained significant attention in ma-
terials simulation by extending both the length and time scales to
those of classical potentials while maintaining accuracy close to
that of DFT.40–44 Therefore, employing MLIPs in the simulation of
liquid electrolytes is poised to overcome the difficulties in DFT or
classical force fields mentioned above. However, there are signifi-
cant challenges in developing MLIPs for liquid electrolytes, partic-
ularly with traditional application-specific, bespoke-style MLIPs.
First, generating training sets with DFT-based MD simulations in-

curs high computational costs. This is because adequate sampling
of all possible configurations, including different molecular con-
formers and achieving ergodicity, requires long-term simulations.
Second, in order to computationally identify optimal formulations
from material screening, it is necessary to develop MLIPs that can
be applied to a wide range of organic molecules. This in turn
requires the creation of a comprehensive training set incorporat-
ing various combinations of solvents and salt pairs and a careful
sampling of both intramolecular and intermolecular interactions
among different chemical moieties. Thus, previous studies have
relied on many cycles of iterative learning to generate such train-
ing sets,45,46 incorporating various strategies to improve the pre-
cision of intermolecular interactions. Consequently, most studies
using MLIPs have been limited to investigating specific solvent-
salt systems, such as glyme-based electrolytes47 and carbonate
electrolytes,45,48 or solvent-only systems consisting of mixtures
of EC and EMC46. In another example using the graph neural
network interatomic potential (GNN-IP), ref 49 analyzed the Li
transport mechanisms in deep eutectic electrolytes and lithium
bis(trifluoromethanesulfonyl)imide (LiTFSI). It is notable that ref
50 has extended the chemical space by incorporating ester mate-
rials and fluorine doping at various sites in carbonates. However,
for untrained fluorine-doped systems, the density error reached a
maximum of 21%.

Recently, pretrained general-purpose GNN-IPs such as
M3GNet,51 CHGNet,52 PFP,53 GNoME,54 MACE-MP-0,55

SevenNet-0,56 MatterSim,57 eqV2 M,58 and ORB59 have
emerged, providing generalizability across diverse chemical
spaces. It has been also shown that fine-tuning the pretrained
model can achieve the precision of bespoke models at a small
cost.60–62 The generalizability of these models largely stems from
the architecture of GNN-IPs, such as NequIP63 and MACE,64

which automatically extracts important features from deep learn-
ing. In addition, atomic species are embedded with learnable
parameters, allowing the model to learn chemical similarities
between elements.65 This enables the pretrained model to
capture general trends in chemical bonding.

Most of current pretrained models were trained using inor-
ganic materials databases such as the Materials Project,66 Alexan-
dria,67 and OMat24.58 Nevertheless, MACE-MP-0 demonstrated
reasonable accuracy and stability in simulating liquid electrolytes
when applied to the EC/EMC LiPF6 electrolyte and a complete
battery system.55 In another example, ref 68 compared densi-
ties and diffusivities of 3:7 EC:EMC solvents between the be-
spoke MACE and MACE-MP-0 models and found resonable agree-
ments. However, for pretrained models extensively trained on
inorganic compounds, liquid electrolytes fall into strongly out-of-
distribution domains. First, as will be detailed in this work, rele-
vant structural motifs of organic molecules were not fully sampled
in the dataset. One may question whether training on an organic
dataset such as SPICE69 or using molecule-based pretrained mod-
els like MACE-OFF70 would offer a better alternative. However,
SPICE contains few Li-containing structures, and MACE-OFF lacks
training on ionic species such as Li and PF6, making these models
unsuitable for comprehensive simulations of liquid electrolytes.
Furthermore, most pretrained models do not explicitly account
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Solvents Salts

• Anions

• Cations

FSI−

PF6
−

Li+ Na+ K+• Ethers

• Esters

• Linear carbonates

• Cyclic carbonates

Chemical groups

DME

EA

DMC
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Oc Cc

Oe

Expansion

• Isomerism

• Fluorination

• Bond order

• Elongation

cis-/trans-DFEC

MFDMC

VC

EMC

Fig. 1 Schematic description of the solvent molecules and ions inves-
tigated in this study. The solvents are categorized by chemical groups
(carbonate, ester, and ether) and molecular structures (cyclic or linear)
(left). Variations in the solvent set include changes in bond order, molec-
ular elongation, partial fluorination, and isomerism (middle). Examples
of the carbonyl oxygen (Oc), carbonyl carbon (Cc), and ethereal oxygen
(Oe) are indicated on the EC molecule. The anions and cations used for
salts in the electrolyte systems are shown in the right. For corresponding
IUPAC names and formulas, refer to Table S1.†

for long-range electrostatic interactions, and research on implicit
treatment is rarely addressed.71 As a result, it is unclear how well
they can describe solvation structures and dielectric properties,
which are primarily governed by Coulomb interactions. There-
fore, a systematic analysis on the general accuracy of current pre-
trained models in liquid electrolytes is on demand.

In this work, motivated by the above discussions, we systemat-
ically investigate the accuracy of SevenNet-072 (simply SevenNet
or 7net henceforth) in applications involving liquid electrolytes.
SevenNet has achieved high performance in the Matbench Dis-
covery benchmark, which assesses the performance of pretrained
universal force fields on inorganic crystal discovery.73 To evalu-
ate whether the pretrained model is suitable for extensive mate-
rial screening, we tested its performance across a diverse range of
electrolytes. Although SevenNet does not explicitly incorporate
electrostatic interactions, its message-passing traits are expected
to implicitly encode these effects up to the receptive field (see ref
71), and an explicit van der Waals functional is employed with
SevenNet. Key properties such as densities, solvation shell struc-
tures, and diffusivities were compared with experimental data
or ab initio MD (AIMD) results. While the overall agreement

with reference data was good, SevenNet exhibited force softening
and overestimated solvent density. To address this, we also fine-
tuned SevenNet, which significantly improved the model’s accu-
racy. This work highlights the potential of SevenNet for future
engineering of liquid electrolyte systems.

2 Results and discussion

To test SevenNet with various types of molecules employed in liq-
uid electrolytes, we considered a total of 20 solvents and 2 salts,
as listed in Table S1† and schematically summarized in Fig. 1.
The test solvents were selected to encompass a broad range of
liquid electrolytes used in commercial batteries or in advanced
battery research. They represent four major chemical groups:
cyclic carbonates, linear carbonates, ethers, and esters. As base
molecules, we used EC for cyclic carbonates, DMC for linear car-
bonates, dimethoxyethane (DME) for ethers, and ethyl acetate
(EA) for esters, as shown on the left of Fig. 1. To expand the
chemical space, we varied the molecular structures by altering
the bond order, elongating carbon chains, incorporating fluorine
atoms, and exploring cis–trans isomerism, as depicted in the cen-
ter of Fig. 1. For salts, LiPF6 and lithium bis(fluorosulfonyl)imide
(LiFSI) were considered (see the right of Fig. 1). For cations,
we focused primarily on Li ions (Li+), although sodium (Na+)
and potassium (K+) ions were also included in the solvation shell
analysis.

The full simulation of liquid electrolytes involves various types
of bonding/nonbonding, intra-/intermolecular interactions. To
systematically assess the accuracy of SevenNet, we apply the
model to progressively more complex systems in the following
subsections, starting from single molecules, moving to pure sol-
vents, and finally to full electrolytes.

2.1 Single solvent molecules

For the simulation of organic systems, an accurate description of
a single molecule is a basic requirement. We compared the single-
molecule energies and structures of SevenNet and DFT for 20 sol-
vent molecules. The molecule was initially placed in a cubic box
with periodic boundary conditions, where the length of the box
was set to 10 Å plus the maximum molecular length along each
axis. Since the graph connectivity in SevenNet is truncated be-
yond the 5 Å cutoff, periodic images do not spuriously appear in
the local atomic environment of the target molecule in the Seven-
Net calculations. In the DFT calculations, a dipole correction was
applied in all directions to remove spurious dipole-dipole inter-
actions between periodic images. Structural relaxation was per-
formed until the magnitude of the atomic forces was reduced to
within 0.02 eV/Å. In Fig. 2a, we compare the per-atom energies
obtained by SevenNet and DFT relaxation. The mean absolute
error (MAE) is 23 meV/atom, where the largest deviation of 51
meV/atom found with the VC molecule. Although the energy er-
ror is larger than that of MLIPs trained solely on molecular sys-
tems (a few meV/atom),46,70 it does not alter the relative energy
ordering of the single molecules, offering basic evidence of accu-
racy of SevenNet. We also compared the bond lengths and angles
of relaxed molecular structures to verify that SevenNet produced
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Fig. 2 (a) Comparison of per-atom energies (left axis) and corresponding errors (right axis) between DFT and SevenNet predictions for 20 single
solvent molecules. (b) Relative energy profiles for DMC (left) and EA (right) molecules as a function of Oc−Cc−O−C dihedral angle. See the inset
for the schematic images. (c) Force softening scales for each atom type (left axis) and the distribution of absolute errors in force components (right
axis) obtained from single-molecule SevenNet MD trajectories. MAEs of the force components are indicated by white-filled circles.

molecular geometries correctly. The MAEs for bond lengths and
angles are 0.005 Å and 0.7°, respectively, indicating highly ac-
curate structural predictions that underscore the robustness of
SevenNet for short-range interactions.

Linear solvents exhibit cis–trans conformers, and structural dif-
ferences affect dipole moments,74,75 influencing the participation
of solvent in Li-ion solvation.76 We select two molecules, DMC
and EA, since linear carbonates and esters generally exhibit larger
energy barriers between conformers compared to other types of
molecules. In Fig. 2b, by performing dihedral-angle-constrained
ionic relaxations, we scan a total of 180° in 10° intervals for the
Oc−Cc−O−C dihedral angle in DMC and EA (see the inset). It
is seen that SevenNet underestimates the torsion barrier by 0.04
eV and 0.12 eV for DMC and EA, respectively. This underestima-
tion of barriers may be related to the softening of potential energy
surface (PES) in pretrained models that were primarily trained on
low-energy structures.62

To investigate the accuracy of atomic forces, we conducted a
0.5-ns MD simulation of a single molecule in an NVT ensemble
using SevenNet. A Nosé–Hoover thermostat77 and a timestep
of 0.5 fs were employed. The temperature was set to 600 K to
sample high-energy structures, and 500 snapshots were extracted
at intervals of 1 ps. Subsequently, single-point DFT calculations
were performed on these snapshots. The parity plots for energy
and force for each single-molecule MD are provided in Fig. S1
and S2.† Energy shifts observed in Fig. S1 are in agreement with
Fig. 2a. The softening scales and the corresponding absolute er-

ror distributions of the force components are shown in Fig. 2c.
The softening scale is defined as the slope of the linear function
fitted to the force parity plot. The ideal value is one, and those
below one indicate that the forces predicted by SevenNet were
systematically smaller than those calculated by DFT. To examine
whether force error and softening depend on specific atom types,
atoms were classified into 19 categories (Fig. S3†). To be specific,
the oxygen atoms were divided into carbonyl (Oc) and ethereal
(Oe) oxygens (see Fig. 1). The carbon atoms were categorized
based on their bonding environments; for example, CCOFH rep-
resents a carbon atom bonded to one carbon, one oxygen, one
fluorine, and one hydrogen atom. Double-bonded carbons in VC
were classified separately. Fluorine atoms were labeled accord-
ing to the type of carbon atom to which they are bonded; for
instance, FCOFH refers to fluorine atoms bonded to a CCOFH car-
bon atom. In Fig. 2c, most atom types exhibit some degree of
force softening; however, the extent of softening varies among
atom types. Notably, pronounced softening is observed for flu-
orine atoms in FOFH2 and FCFH2 local structures. Additionally,
molecules containing partially fluorinated carbon moieties, such
as TFDMC, show relatively larger force errors (Fig. S2), which is
consistent with the observations in Fig. 2c. As will be discussed
below, this significant level of softening may stem from the lim-
ited representation of these chemical moieties in the training set.
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2.2 Pure solvents

Next, we simulated pure solvents composed of a single type of
organic molecule to obtain their theoretical densities. Liquid
density plays a critical role in determining the physicochemical
properties of electrolytes. For example, a density decrease of
just 0.1 g/cm3 can result in a twofold increase in diffusivity for
acetonitrile at 298 K.78 The initial configurations for the liquid
simulations were generated using MolView79 and PACKMOL.80

The number of molecules was chosen so that the total number
of atoms was closest to 1000. To determine the length of the
cubic simulation box without relying on experimental data, we
first obtained V0 by adding the van der Waals volumes81 of all
atoms in the simulation box. The initial box length was then
set to 1.1×V 1/3

0 . This volume estimate ensures that neighbor-
ing molecules are close enough for inter-molecular connectiv-
ity within the graph neural network, while still providing suffi-
cient space to prevent molecular overlap. (The actual numbers
of molecules and the sizes of the simulation boxes for each sim-
ulation are summarized in Table S2.†) For propylene carbonate
(PC) and fluoroethylene carbonate (FEC), two chiral conformers
were considered in equal proportions. For the cis–trans conform-
ers of linear carbonates and the syn/anti conformers of esters,
the Boltzmann distribution, with potential energies calculated us-
ing SevenNet, was used to determine the initial ratio (see Tables
S3 and S4†). This procedure was crucial during the equilibration
step, as the conformer ratio could not equilibrate within a feasi-
ble time scale due to the large energy barrier (∼0.4 eV) between
conformers, which is significantly higher than the thermal energy
at room temperature.

The initial structures were relaxed under loose conditions
(maxi |Fi| < 2.0 eV/Å), followed by MD simulations for 1 ns in the
NPT ensemble with a timestep of 2 fs at the target temperature
and a pressure of 1 atm as pre-equilibrations. The Nosé–Hoover
thermostat and barostat82 were applied as implemented in the
LAMMPS package. To ensure a fair comparison with experimental
data, the simulation temperatures were matched to the experi-
mental conditions. Specifically, all simulations were conducted at
298 K, except for EC (313 K), FEC (313 K), DME (293 K), and 1,2-
diethoxyethane (DEE) (293 K). To maintain stable simulations
and prevent large positional fluctuations with a timestep of 2 fs,
the atomic mass of tritium (3H, 3 a.u.) was assigned to hydro-
gen atoms. We emphasize that this modification was applied only
during the pre-equilibration stage using 2-fs timestep throughout
the study, except for the cases described in Section 2.3.1. Both
the equilibration and the production run were performed with
the original hydrogen mass and a 1-fs timestep. To determine the
equilibrium density of the system, an additional 0.4-ns simulation
was performed in the NPT ensemble with a reduced timestep of 1
fs. Following 0.2-ns equilibration, the density was calculated by
averaging the instantaneous density values (recorded every 10 fs)
during the last 0.2-ns production run. Throughout all equilibra-
tion and production runs, no spurious reactions were observed,
confirming the stability of the simulations.

Fig. 3a presents computed liquid densities. Since reference
densities obtained with DFT are scarce, we compared with ex-
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Fig. 3 (a) Parity plot comparing pure solvent densities calculated using
SevenNet to experimental values, categorized by chemical groups. MD
simulations were conducted at 298 K, except for EC (313 K), FEC (313
K), DME (293 K), and DEE (293 K). The blue circles, orange triangles,
green squares, and red pentagons represent cyclic carbonates, linear car-
bonates, ether, and ester, respectively. The black ‘x’ symbols indicate
the values obtained with fine-tuned SevenNet. (b) Pressure distributions
for DFEC, FEC, DMC, and PC from individual SevenNet-MD and AIMD
simulations conducted in the NVT ensemble over 15 ps at experimental
densities. Temperatures are set to match the experimental values in Table
S5.† Vertical dashed lines indicate the mean values of each distribution.
(c) Parity plot comparing pure solvent densities predicted by SevenNet
(blue circles), BAMBOO (orange triangles), QRNN (green squares), and
OPLS4 (red pentagons) versus experimental values.
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perimental data sourced from refs 10,50,83–89. (See Table S5†
for the actual values and errors.) To identify systematic trends,
we classified the solvents into four chemical groups; cyclic car-
bonates, linear carbonates, ethers, and esters. Fig. 3a shows
that the densities computed using SevenNet generally overesti-
mates compared to experimental values. However, the degree
of overestimation is not random but consistent within chemical
groups. To be specific, cyclic solvents, including cyclic carbonates
and γ-Butyrolactone (GBL), exhibit smaller deviations, ranging
−3%∼7%, while linear solvents show higher overestimation by
9%∼15%.

To clarify whether the discrepancy in predicted densities is pri-
marily due to limitations of the SevenNet model or inherent inac-
curacies in the DFT functional (PBE-D3), we examined the pres-
sure distributions (average of diagonal components of the virial
stress) by SevenNet and DFT for FEC, difluoroethylene carbonate
(DFEC), DMC, and PC liquids, when the volumes are adjusted to
match with the experimental densities. The temperatures were
set to 298 K (DEFC, DMC, and PC) or 313 K (FEC). For the
feasibility with DFT calculations, we chose a smaller simulation
cell containing 30 solvent molecules and the initial configura-
tions (with equal chirality for PC and FEC) were equilibrated un-
der SevenNet for 1 ns. Equilibrations are performed using a 2-fs
timestep assigning tritium mass to hydrogen atoms. From these
equilibrated structures, we ran 20-ps production simulations in
NVT ensembles independently with either SevenNet or DFT with
a 1-fs timestep and the original hydrogen mass, recording the
pressure every 10 fs during the final 15 ps to gather 1500 data
points.

Fig. 3b shows the pressure distributions of both DFT and Seven-
Net for each solvent, with vertical dashed lines marking the mean
values of each distribution. The pressure values include dynamic
contributions, meaning that the thermal effects at the reference
temperature are fully accounted. For DFT, the average pressure
remains close to zero in all solvents, suggesting that the exper-
imental volume is close to the equilibrium density predicted by
PBE-D3. The absolute pressures are 0.77 and 0.50 kbar for DMC
and PC, respectively. Given the bulk moduli of 1.6 GPa for DMC90

and 2.4 GPa for PC91 at 298 K, the corresponding density errors
for DFT are on the order of 5% and 2%, respectively. However,
a more rigorous convergence study exploring larger simulation
cells and longer time scales, would be needed for quantitative
accuracy. A previous work demonstrated that bespoke MLIPs can
predict densities of EMC-rich solvent mixtures to within about 5%
of experiment at the PBE-D3 level, using a relatively small cutoff
radius of 10 Å for the D3 term.46

In contrast, SevenNet predicts more negative pressures for
DMC and PC in Fig. 3b, indicating a significant compressive
stress that drives the system toward higher density. This shift
is correlated with the degree of density overestimation observed
for PC and DMC when using SevenNet (see Fig. 3a). Further
single-point DFT calculations on SevenNet-generated snapshots
also confirmed that these pressure discrepancies arise from inac-
curacies in the SevenNet model rather than from fundamental er-
rors in the DFT reference (Fig. S4†). The constant shift observed
in the normal stress parity plots indicates a systematic error in

pressure prediction, as the pressure is computed from the aver-
age of the normal stress components. The trends in both mean
error in normal stress and average pressure aligned closely. Con-
sequently, while slight errors in the DFT reference cannot be com-
pletely ruled out, we conclude that the dominant source of den-
sity overestimation in SevenNet is an imperfect learning of stress.
These systematic shifts in pressure and normal stress are likely at-
tributable to insufficient sampling of intermolecular interactions
in the predominantly inorganic training set. As discussed in the
following section, we found that fine-tuned SevenNet reduced
this discrepancy, suggesting that improved training strategies can
bring the predicted pressures and densities closer to the DFT and
also experimental values.

In Fig. S5 and S6,† we calculated potential energy curves for
EC and DMC dimers across eight types of interactions (H–H, Oc–
H, Oc–Oc, Oc–Oe, Oe–H, Oe–Oe, orthogonal, and planar orienta-
tions). It is found that SevenNet has a deeper potential well near
equilibrium, with some equilibrium distances being shorter than
those from DFT. Thus, the pressure deviations in the above can
be attributed to the stronger intermolecular bonding in SevenNet
compared to DFT.

We compared the performance of SevenNet in predicting liquid
densities with other computational methods, namely QRNN,45

OPLS4,45 and BAMBOO50 (Fig. 3c). QRNN and OPLS4 are
quantitatively more accurate, showing errors of −5%∼2% and
−2%∼4%, respectively. We note that a portion of the QRNN train-
ing set was generated at high pressures and another portion with
±20% scaling in intermolecular distances, implying that QRNN
may have learned the equilibrium volume from these training
sets. (This training method was also used in refs 46 and 68.) The
BAMBOO model generally provided density estimates closer to
experimental data than SevenNet, with the exception of the fluo-
rinated linear carbonate group. A density alignment method was
employed for BAMBOO, wherein the model was trained to match
experimental densities for systems such as EC, PC, FEC, DEC,
DMC, and EA, which are plotted together in Fig. 3c. While this
alignment method enabled accurate predictions for in-domain
systems, it limited generalizability to less similar systems, as ev-
idenced by the difluoromethyl fluoromethyl carbonate (TFDMC)
case, where the model overestimates density by 20%. In contrast,
SevenNet exhibited moderate and regularized accuracy across all
solvent systems.

2.3 Full electrolytes

In this subsection, we applied SevenNet to simulate full elec-
trolytes composed of solvents and ion salts. First, we investigated
the solvation shell structures for dilute electrolytes. Next, at a
conventional concentration of Li salt, we analyzed the effect of
solvent type on Li solvation, with a focus on salt dissociation.
Finally, diffusion coefficients were obtained and compared with
experimental values. To avoid potential artefacts, fluorinated sol-
vents were excluded from further analysis due to the force soft-
ening observed in Section 2.1. For all electrolytes, the densities
were adjusted to match experimental values, thereby eliminating
errors associated with density mismatch.
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2.3.1 Solvation shell structures in dilute solutions

The solvation structure of ions plays a critical role in electrolyte
systems, influencing both ion dissociation and the stability of elec-
trode interfaces, which directly impacts ionic conductivity and
battery cycle life. In ref 28, solvation shell structures around Li
ions were investigated in detail by AIMD. In this subsection, we
benchmark SevenNet against these reference results by adopting
the same simulation protocol. In detail, the initial structure con-
sisted of 63 EC (42 EMC) molecules and one LiPF6 salt, corre-
sponding to dilute conditions (0.2 M). Experimental densities of
pure EC (1.32 g/cm3 at 313 K) and EMC (1.01 g/cm3 at 298 K)
were used,10 yielding cubic-cell lengths of 19.28 Å for EC and
19.52 Å for EMC. To obtain various solvation types, ten indepen-
dent simulations were performed: five starting with a dissociated
ion pair and the other five with an associated pair. Each structure
was equilibrated for 7.5 ps at 330 K in the NVT ensemble, fol-
lowed by a 30-ps production run with a timestep of 0.5 fs to en-
sure consistency with the simulation scheme in ref 28 and enable
a fair comparison. Here, the dispersion interaction was excluded
like ref 28. Snapshots were saved every 5 fs, generating 6001
snapshots for each production run. A total of 60 010 snapshots
were collected for each solvent.

In liquid electrolytes, Li ions undergo various types of sol-
vation environments since there can be multiple coordinating
oxygens in a solvent molecule, and anion can also be intro-
duced in the solvation shell. Each solvation shell type has
distinct structural features, like radial and angular distribu-
tions related to Li−O, as studied by AIMD.28 Following the
reference, we classified the collected snapshots into five types
of solvation shell: Li(ECc)4, Li(ECc)3(PF6), Li(EMCc)3(PF6),
Li(EMCc)3(EMCe), and Li(EMCe)2(PF6). Such classification was
based on the composition of the first solvation shell of a Li ion and
the coordinating oxygen type. For example, if a Li ion is coordi-
nated with four EMC molecules–three via Oc and one via Oe–then
it is designated as Li(EMCc)3(EMCe). When both Oc and Oe of a
single solvent molecule simultaneously coordinated a Li ion, the
coordinating oxygen type was designated as Oc, where coordina-
tion by two Oe atoms was classified as Oe-type coordination.

The radial distribution function (RDF) g(r) and the coordina-
tion number (CN) of an atom type B around an atom type A is
defined as follows:92

g(r) =
1

ρB

1
4πr2

dN(r)
dr

(1)

CN = N(rcut) (2)

where N(r) is the average number of particle B within a sphere
centered on particle A with a radius of r, and ρB is the number
density of B atoms. The cutoff threshold rcut of Li−O was set
to 2.6 Å and 4.2 Å for Li−P, which were obtained from the first
minimum of RDF.

The bond length distributions of Li and oxygen of two repre-
sentative solvation types, Li(ECc)4 and Li(EMCc)3(PF6), are pre-
sented in Fig. 4a. (The corresponding results for other solvation
types are shown in Fig. S7.†) Overall, the distributions of Li−Oc
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Fig. 4 Solvation structures of Li(ECc)4 and Li(EMCc)3(PF6) solvation
types obtained by SevenNet, compared with DFT results. 28 (a) RDFs
(solid lines) of Li−Oc and Li−Oe, along with their CNs (dashed lines)
for each solvation type. Examples of Li−Oc and Li−Oe distances are
illustrated in the inset. (b) Angular distributions of Oc−Li−Oc and
Li−Oc−Cc angles for each solvation type. Examples of angles are il-
lustrated in the inset.

and Li−Oe distances and CNs (right axis) show good agreements
with DFT results. In experiments, slightly longer bond lengths of
2.04–2.08 Å were reported in concentrated solutions of LiPF6 salt
in PC and DMC.93,94

The distributions of Oc−Li−Oc and Li−Oc−Cc angles in Fig. 4b
also agree well with DFT. The Oc−Li−Oc angle peaked at ap-
proximately 107°, minimizing steric hindrance within the near-
tetrahedral coordination environment. This angle remains consis-
tent regardless of the presence of PF−6 in the first solvation shell.
Meanwhile, the Li−Oc−Cc angle deviates from 180°, likely due
to the partial negative charges on the two Oe atoms bonded to
Cc, which attract positively charged Li ions. This angle varies de-
pending on the solvent: 132° in EC and ranging from 149° to 156°
in EMC. This difference reflects the steric hindrance imposed by
the bulky, linear structure of the EMC molecule. A similar trend
has been observed experimentally, with PC exhibiting a Li−Oc−Cc
angle of 138° and DMC showing an angle of 153°.93,94 On the
other hand, ReaxFF produced a sharper peak near 90°, suggest-
ing a more rigid Li−Oe interaction,28 highlighting limitations in
ReaxFF.

We extended our study to examine other alkali metal ions, Na+

and K+. By replacing Li with Na or K in 63 EC + 1 LiPF6 simu-
lations, we conducted a 7-ps equilibration MD run followed by
a 25-ps production run for each cation. The distributions of the
cation-oxygen distance are shown in Fig. S8.† The Na-O and K-O
bond lengths are 2.34 and 2.74 Å, respectively, aligning closely
with AIMD results of 2.35 and 2.80 Å.29 Compared to the Li-O
distribution, the first peak is broadened and reduced in inten-
sity, indicating weaker interactions between the cation and oxy-
gen atoms as the ionic radius of the cation increases. This weaker
solvation of Na+ and K+ relative to Li+ arises from the delocal-
ization of outer-shell electrons in larger cations, which hinders
lone-pair sharing from oxygen atoms.29
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Fig. 5 Variations in solvation environment in the EC/DMC binary solvent
system with 1 mol/kg LiPF6. (a) Average CNs of Li contributed by EC
and DMC solvents and (b) the degree of ion dissociation as a function
of xEC. Experimental values for 1 mol/kg LiPF6

95 are shown alongside
results from other force fields (APPLE&P 39 and Class-II force field 96) for
1 M LiPF6. Circle markers represent the dynamic degree of dissociation
αd, while triangle markers represent the static degree of dissociation αs.
Error bars represent the standard deviation of 3 simulations. Represen-
tative solvation structures for fully dissociated and aggregated cases are
displayed on the right side of the plot.

These results demonstrate that SevenNet effectively recognizes
the Li atom in the solvent as a cation and accurately captures
Coulomb interactions with negatively charged oxygen atoms, de-
spite being trained without explicit charge information. Building
on our previous analysis of both molecular structures and sol-
vation shell configurations, we conclude that SevenNet demon-
strates high accuracy in capturing the geometric properties of the
system, which implies that short-range interactions are accurately
represented.

2.3.2 Effect of solvent type on Li solvation

In this subsection, we investigated electrolytes with high Li salt
concentrations used in commercial batteries. Depending on the
solvents, the degree of ion dissociation between cations and an-
ions varies, resulting in structures such as solvent-separated ion
pairs (SSIPs), contact ion pairs (CIPs), and aggregates (AGGs), as
illustrated in Fig. S9a.† Mixing cyclic solvents with high dielec-
tric constants and linear solvents with lower dielectric constants
influences ion dissociation and the composition of the first sol-
vation shell.95,97 Accurately simulating these phenomena is es-
sential for identifying optimal electrolytes, which often balances

multiple objectives, such as high ionic conductivity and robust SEI
formation.3,10

As a concrete example, we selected the EC/DMC binary sol-
vent system with 1 mol/kg LiPF6, varying the EC molar fraction,
xEC =NEC/(NEC+NDMC), where Nα is the number of α molecules.
This system has been widely studied to explore the competi-
tion between two different solvent types within the Li solvation
shell.39,95,98,99 Recent experimental and computational studies
have confirmed that EC is preferred for Li solvation over DMC,
reducing cation-anion cross-correlation and enhancing ionic con-
ductivity, particularly at low xEC values.95,99

All simulations were performed in the NVT ensemble at exper-
imental densities. (Like the case with pure solvents, SevenNet
overestimated the density of solvent-salt systems, as shown in
Fig. S10† for EC/LiFSI electrolyte.) The conformer ratio of DMC
for each composition was obtained from the experiment.95 The
temperature was set to 298 K to match the experimental condi-
tions. The number of solvent and salt molecules was adjusted to
correspond to a LiPF6 concentration of 1 mol/kg, ensuring the to-
tal number of atoms remained below 1000. Li ions were placed
by dividing the simulation domain into distinct regions and ran-
domly distributing the Li ions within these regions, as illustrated
in Fig. S11.† This approach prevented the generation of initial
structures where Li ions were clustered on one side. The specific
numbers of solvent and salt molecules, along with the simulation
box lengths, are summarized in Table S6.†

Equilibration was performed over 1.4 ns, starting with an ini-
tial 1 ns using a 2-fs timestep and a hydrogen atomic mass of 3
a.u., as described earlier, followed by an additional 0.4 ns of equi-
libration. A production run of 1 ns was conducted, with snapshots
saved every 100 fs. The CNs for EC, DMC, and PF−6 anions were
calculated and averaged across all snapshots for each simulation.
To ensure statistical reliability, three independent runs were car-
ried out, each starting from a distinct initial configuration.

Fig. 5a shows the computed compositions of the Li solvation
shell as a function of xEC. The sum of CNs of Li aligns well with ex-
perimental trends95 and APPLE&P MD simulations (Fig. S12†).39

Notably, EC molecules were strongly favored in the solvation shell
at low xEC. For instance, at xEC = 0.13, the local fraction of EC in
the Li solvation shell is 0.25 (SevenNet) and 0.32 (experiment),
significantly higher than the bulk EC ratio of 0.13. Over the entire
range of 0< xEC <0.7, the total CN of Li remains approximately
4. A comparison of CNs obtained using different force fields is
presented in Fig. S12.†

Next, we computed the degree of ion dissociation, whose def-
inition subtly varies across the literature.39,100 The static degree
of ion dissociation, αs, is defined as the fraction of free ions,39

which in turn is defined as having no counterions in its first sol-
vation shell, corresponding to the SSIP solvation state. Some
studies focused specifically on free cations,100 which tends to
yield slightly higher values of αs compared to free ions.39 On
the other hand, the dynamic degree of ion dissociation, αd, also
referred to as the degree of uncorrelated motion, is defined as
the ratio of ionic conductivity to the Nernst-Einstein conductiv-
ity.39,97 Both measures are directly comparable to experiment:
αs via Raman spectroscopy95 and αd via NMR experiments com-
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bined with impedance measurements.97 While αs and αd are not
directly interchangeable, they exhibit similar trends with vary-
ing solvent composition, as observed in both computational39

and experimental95 studies. For instance, in the GBL/DMC sys-
tem with LiFSI salts, αs and αd were found to be comparable
at xGBL > 0.4.95 However, as xGBL approached zero, αs decayed
more rapidly than αd. In our study, we employed the fraction of
free cations, αs, to represent the degree of ion dissociation, as
calculating αd requires long-term MD simulations.

Fig. 5b presents computational results alongside experimental
data and results from other force fields. An increase in the degree
of ion dissociation with higher xEC is observed, consistent with
experimental trends.95 These results are not influenced by the
initial ion pair configuration, whether dissociated or associated.
APPLE&P predicted both αs and αd approaching zero at low xEC

but produced relatively lower values of αs (or αd) at higher xEC.39

In contrast, the Class-II force field predicted largely dissociated
Li ions even at xEC = 0.1,96 which significantly disagrees with
experimental data. (To note, the results in refs 39 and 96 were
obtained at a salt concentration of 1 M, not 1 mol/kg. Here, 1
mol/kg of LiPF6 corresponds to 1.02–1.16 M, depending on xEC.)
The observed dissociation trend is consistent with the decreasing
coordination of PF−6 ions with increasing xEC in Fig. 5a.

In Fig. S9b† and the accompanying text, we conducted a sim-
ilar analysis of the degree of ion dissociation for EC, PC, DMC,
and DEC with 1 M LiPF6 salts, using solvents of similar donor
numbers.101 The dominance of LiPF6 ion pairs in solvents with
low dielectric constants, such as DMC and DEC, and their dissoci-
ation in high dielectric constant solvents, such as EC and PC, are
consistent with the results for EC/DMC mixtures and align with
infrared spectroscopy analysis.102 Additionally, steric hindrance
from bulkier alkyl groups leads to relatively weaker salt dissoci-
ation in PC and DEC compared to EC and DMC, as the Li−O in-
teractions are hindered by the increased bulkiness of the solvent
molecules.103,104 These results demonstrate that the pretrained
potential effectively captures the dynamic variations in dielectric
shielding between cyclic and linear solvents, suggesting that it
implicitly learns long-range interactions to a certain extent.

2.3.3 Diffusivities

The diffusivity of anions and cations in electrolytes is an impor-
tant property that determines battery performance. We theoret-
ically obtained the self-diffusion coefficient (D) for Li+ and PF−6
in pure solvents like PC and DMC as well as mixed solvents of
EC/DMC, for which the experimental data are available. As in
the previous subsection, we employed the experimental densities,
while results with the theoretical densities are also discussed.

For single solvent electrolyte systems, simulations were per-
formed in the NVT ensemble, following a procedure largely simi-
lar to that used for the EC/DMC 1 mol/kg LiPF6 system described
in the previous subsection. The temperatures were set accord-
ing to where the experimental diffusivities were measured: 293
K for PC or DEC105 and 298 K for DMC.106 Experimental densi-
ties were used to generate initial configurations,107–109 and the
numbers of solvent and salt molecules were adjusted to achieve
a 1 M LiPF6 concentration with total number of atoms close to

1000. Detailed information on the number of molecules and the
simulation box lengths are listed in Table S7.† An equilibration
run of 1.4 ns was followed by a 1-ns production run, similar to the
EC/DMC 1 mol/kg LiPF6 simulation. Snapshots were sampled ev-
ery 100 fs for calculation of ion diffusivity. Five independent runs
were conducted with different initial configurations for statistical
average.

For the EC/DMC 1 mol/kg LiPF6 binary solvent electrolyte sys-
tem, longer production runs were found to be essential for dif-
fusion analysis, likely due to the more complex solvation nature
of ions in binary solvents compared to single solvent electrolyte
systems. Starting from the NVT MD simulations described in the
former subsection, four compositions were selected, and the pro-
duction runs for each composition were extended to 7 ns across
three independent runs to obtain reliable diffusivity data.

From the MD trajectories during the production run, the self-
diffusion coefficient was calculated by the mean squared displace-
ment (MSD) for each ion type. In detail, with a given time win-
dow τ and position vector ri(t) of a particle i at time t, the squared
displacement was averaged over all particles with the same type
and all available time origins:110

MSD(τ) = ⟨|ri(t + τ)− ri(t)|2⟩t,i (3)

=
1

Nτ

T−τ

∑
t=0

1
Ni

N

∑
i=0

|ri(t + τ)− ri(t)|2 (4)

where Nτ is the number of available time windows and Ni is the
number of particles of interest. We then obtained D using the
Einstein relation.111

D = lim
t→∞

MSD(t)
6t

(5)

The linear regression of an MSD–τ curve using appropriate
bounds efficiently captures the linear region of diffusion.110 We
set the lower and upper bound as 10% and 60% of the total pro-
duction time, respectively, ensuring accurate identification of the
linear region in the MSD–τ curve yielding an R2 value mostly
above 0.98 (Fig. S13†). This approach filters out the short-time
regime including ballistic motion and the noisy long-time tail due
to fewer available time origins, ensuring a reliable diffusivity es-
timate.

In Fig. 6a and b, we present the calculated diffusivities of Li+

and PF−6 (DLi and DPF6 , respectively) when 1 M LiPF6 is des-
olved in PC, DMC, or DEC solvents. The corresponding MSD–
τ curves with the R2 values obtained from the linear regression
are presented in Fig. S13.† Relatively large standard deviations
in diffusivity values, up to 50%, are attributed to statistical errors
arising from the relatively short MD time scale compared to typ-
ical classical force field simulations. For comparison, other com-
putational37,39,45 and experimental107,112 results are also pro-
vided. The actual diffusivity values, along with predicted and
experimental densities, can be found in Table S8.† Among the
computational approaches, SevenNet achieved reasonable accu-
racy in a consistent way. In comparison, other computational
methods showed larger discrepancies with experiment although
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Fig. 6 Comparison of diffusivity of (a) Li and (b) PF6 obtained using SevenNet at experimental density (orange), QRNN 45 (blue), OPLS4 45 (green),
TraPPE 37 (red), APPLE&P 39 (purple), and experiments 107,112 (black). Error bars indicate the standard deviation across five simulations. The black
dots on the orange bar indicate the calculated diffusivity at the equilibrium density obtained from SevenNet-NPT simulations. (c) Diffusivity of solvents
and ions in EC/DMC (1 mol/kg LiPF6) electrolyte at 298 K. Values were averaged over 3 simulations. The actual diffusivity values and standard
deviations can be found in Table S9.† Experimental values were adopted from ref 95. The results by BAMBOO are also displayed. 50

they accurately predicted pure solvent density. This might be at-
tributed to the general overestimation of viscosity in the QRNN
and OPLS4 models and the overestimation of relative permittiv-
ity in the TraPPE model. The former slows molecular movement,
while the latter affects solvent dynamics. In contrast, the AP-
PLE&P model demonstrated less than 4% error in the density of
1 M LiPF6 in the DMC solvent and achieved accuracy compara-
ble to SevenNet. SevenNet also successfully captured the general
trend of higher anion diffusivities compared to cations, consistent
with previous studies.28 This phenomenon likely results from the
strong solvation of Li ions by the solvents, which hinders their mo-
bility relative to PF−6 ions. Consistently, the higher permittivity of
PC enhances solvation and suppresses Li-ion diffusivity relative to
the DMC solvent. In Fig. 6a and b, the diffusivities obtained when
the SevenNet equilibrium density was used are marked in black
dots in the middle of the bar. The diffusivity was significantly
reduced by 50%∼70%, underscoring the critical role of density.
Fine-tuning with explicitly sampled intermolecular interactions,
or developing a pretrained model incorporating both organic and
inorganic datasets, are potential solutions to this problem.

In Fig. 6c, the diffusivity of ions in the EC/DMC (1 mol/kg
LiPF6) binary solvent system shows good agreement with exper-
imental values, albeit with slight underestimation.95 The over-
all decrease in diffusivity with increasing xEC reflects reduced
electrolyte mobility as the concentration of the highly viscous
EC solvent increases, indicating that the variation in viscosity is
also well described by SevenNet. Notably, the general trend of
DDMC > DEC > DPF6

> DLi is consistent across all compositions.
The lowest diffusivity of Li+ suggests its largest hydrodynamic
size, even greater than that of the PF –

6 anion, due to strong co-
ordination with surrounding solvent molecules.95

2.4 Analysis on the training dataset

In the preceding subsections, the overall performance of Seven-
Net in simulating liquid electrolytes was found to be satisfac-
tory. To investigate whether this accuracy arises from adequate
sampling in the training set, we analyzed the Materials Project

Trajectory (MPtrj) dataset52 for the presence of relevant solvent
molecules and chemical moieties. We first identified molecular
units embedded in the inorganic compounds that include O, C,
and H atoms. The detailed procedure is described in the text
accompanying Fig. S14.† Among the 20 solvent molecules stud-
ied in this work, only the DME molecule was found in four com-
pounds (Fig. S14a†). To explore the presence of similar types of
molecules, we manually inspected molecular units consisting of
6–24 atoms, including O, C, and H, and identified similar motifs,
such as ether, ester, and five-membered ring groups (Fig. S14b†).
However, no carbonate groups were found.

We further examined the presence of the local chemical moi-
eties classified in Fig. S3.† As shown in Fig. S15,† structures con-
taining species such as Oc/Cc, C−−C, and CCH3 were prevalent in
the training set. This abundance of these chemical moieties can
be understood by general chemistry. However, several moieties
were scarce in the training set, in particular fluorinated ones. For
example, only 32 structures contained the COFH2 moiety, and the
CCFH2 moiety was absent. Such data scarcity may explain the
pronounced softening for the fluorine atoms in Fig. 2c.

Extending the analysis to the Li solvation shell, we identified
structures in the MPtrj training set containing Li−Oc or Li−Oe, as
well as oxygen atoms bonded to Na+ and K+, which share simi-
lar chemical properties with Li+. Specifically, we found 183 and
63 structures containing Li−Oc and Li−Oe moieties, respectively
(see Fig. S16† for representative structures). The Li−Oc struc-
tures predominantly included carbonate ions and their deriva-
tives. Notably, a substantial number of these structures contained
transition metals coexisting with Li+, Na+, and K+, which are
commonly used in LIB cathodes. The exhaustive search for new
cathode materials has likely contributed these structures to the
databases. The Li ions are mostly charged in the corresponding
structures, which allowed SevenNet to learn Coulomb interac-
tions between Li+ and Oc or Oe.

The foregoing analysis indicates that significant portions of
molecular units or chemical moieties were directly sampled in the
MPtrj dataset, suggesting that relevant local chemical bondings
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were mostly captured. However, non-local bondings that con-
tribute to the formation of whole molecular units and intermolec-
ular interactions, in particular between organic molecules, were
not sufficiently sampled. This suggests that the model learned
large parts of the PES by generalizing across the chemical space,
facilitated by deep learning and learnable atomic embeddings.

To understand model generalization in terms of latent space,
we paid attention to COF2H and Li solvation shells. The COF2H
moiety was absent in the training set but exhibited a notable de-
gree of force accuracy (see Fig. 2c). This means that the model
interpolate or extrapolate from other structures in the training
set. For Li solvation shells, while the training set included struc-
tures containing Li−Oc and Li−Oe moieties, it remained uncer-
tain how the model handled multiple Li−O interactions within
solvation shells.

For both test cases, we analyzed the atomic descriptors in the
latent space to examine relative proximity or similarity between
structures. We first extracted 128-dimensional invariant atomic
descriptors, which served as input vectors for the output block
producing atomic energies. Dimensionality reduction techniques,
including Principal Component Analysis (PCA) and Uniform Man-
ifold Approximation and Projection (UMAP),113 were employed.
Using PCA, we reduced the dimensionality to 31 components,
retaining 95% of the original variance, and applied a whiten-
ing scheme. As shown in Fig. S17a,† SevenNet positioned the
COF2H moiety—absent in the training set—between the COFH2
and COF3 moieties. Furthermore, as the F:H ratio shifted from
3:0 to 0:3, the PCA data points for each moiety aligned linearly.
That is to say, SevenNet interpolated untrained regions by lever-
aging knowledge derived from trained regions. This brings some
evidence to why foundational models perform so unexpectively
well on untrained domain.

Next, we performed UMAP analysis114 on both the training set
and sampled structures from the simulation on the Li solvation
shells. Euclidean distances between atomic descriptors were used
to construct a high-dimensional graph, where similar descriptors
were positioned closer together, and dissimilar descriptors were
placed farther apart. In particular, we examined distinct solva-
tion types identified in Section 2.3.1 by extracting MD trajecto-
ries (Fig. S17b†) for separate analysis. For each solvation type,
the structure with the minimum potential energy among all snap-
shots was selected. The analysis in Fig. S17b† revealed that the
Li environments within solvation shells formed distinct clusters in
the latent space. The structures in the training set interpreted as
being similar to these Li environments typically featured multiple
oxygen atoms bonded to either Li or Na. While the training set
did not include the same Li–solvent structures encountered dur-
ing MD simulations, the model effectively learned first-neighbor
interactions from these examples, where multiple oxygen atoms
are bonded to a Li ion.

The above analysis on the latent space indicates that SevenNet
might infer untrained regions by generalizing knowledge from
trained regions. However, full understanding of the generaliza-
tion is beyond the current scope because of the black-box nature
of deep learning models.

2.5 Fine-tuning the pretrained model

In the previous sections, we have demonstrated the capabilities
and limitations of SevenNet on liquid electrolytes. Intermolecular
interactions, particularly liquid density, are critical to the physic-
ochemical properties of liquid electrolytes. However, SevenNet
was less accurate for the intermolecular interactions, leading to
the overestimation in the liquid density and underestimation of
diffusivities. It has been shown that fine-tuning pretrained mod-
els can achieve accuracies comparable to bespoke models.60–62 As
an example of fine-tuning in the present applications, we selected
the DMC solvent, which exhibited significant overestimations of
density in Fig. 3a. In this simple fine-tuning for DMC, the model
may lose some generalizability across different systems; however,
our primary goal is to assess whether its density predictions can
be improved with relatively modest efforts.

To construct the training set for fine-tuning, we conducted MD
simulations using SevenNet for 100 ps in the 298 K NVT ensem-
ble with 360 atoms and the experimental density. Subsequently,
DFT single-point calculations were performed on 50 snapshots ex-
tracted from the last 50 ps at intervals of 1 ps. These 50 structures
were further modified by scaling the lattice parameters, while
maintaining fixed intramolecular distances, by factors of 0.9 and
1.1.46 This procedure generated a total of 150 structures for the
fine-tuning training set.

We fine-tuned the model using the same parameters as Seven-
Net, with adjustments to the learning rate and stress loss weight.
The learning rate started at 10−4 and decreased linearly to 10−6

over 600 epochs. Furthermore, the weight of the stress loss was
increased from 0.01 to 1.0 to enhance the fine-tuning effect on
solvent density. For fine-tuning, we did not freeze any weights, al-
lowing the model to adjust solely to the new fine-tuning training
set. To monitor knowledge retention from the original SevenNet
model, we evaluated the MAEs on a test set of 19 072 structures
containing O, C, and H, filtered from the SevenNet training set
(see Fig. S18†). The fine-tuned model (hereafter referred to as
SevenNet-FT) after 50 epochs, achieved MAEs of 0.032 eV/atom,
0.086 eV/Å, and 0.57 kbar for energy, forces, and stresses, respec-
tively. Notably, the stress MAE decreased from 2.78 kbar (Seven-
Net) to 0.57 kbar (SevenNet-FT). In terms of computational cost,
the entire fine-tuning procedure, including training set genera-
tion, required only a few hours on a moderate computing node.

Using SevenNet-FT, we obtained the liquid densities following
the procedure described in Section 2.2, and the results are shown
in Fig. 3a as x-markers. The liquid densities of linear carbonates
align well with experimental results, whereas those of other sol-
vents are underestimated. The normal stress parity plots for pure
solvents (Fig. S19†) reveal significant improvements for linear
carbonates, moderate improvements for cyclic carbonates, ethers,
and esters, but only minor improvements for solvents containing
fluorine atoms. This behavior may be attributed to the fine-tuning
training set, which includes only DMC molecules composed of O,
C, and H atoms, thereby limiting its applicability to cyclic carbon-
ates and fluorinated systems. This suggests that explicitly includ-
ing more relevant intermolecular interactions in the fine-tuning
dataset can significantly improve density predictions for the tar-
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geted molecular class. Additionally, forgetting of knowledge from
SevenNet was not fully prevented during the fine-tuning process
(Fig. S18†), which may have contributed to the underestimation
of densities for PC, FEC, and DFEC. This forgetting could poten-
tially be mitigated by replay methods115,116 or elastic weight con-
solidation,117 although implementing these strategies is beyond
the scope of the present work.

3 Conclusions

In summary, we applied a pretrained universal interatomic po-
tential, SevenNet, to the simulations of liquid electrolytes in LIBs.
Even though SevenNet was mostly trained on the inorganic com-
pounds, it demonstrated sound predictive capabilities for key
properties such as solvation structures and diffusivities. How-
ever, it also exhibited limitations, particularly in predicting liq-
uid density. These limitations stem from under-sampled inter-
molecular interactions in the training set; fine-tuning with rele-
vant structures leads to improvements. However, the weak and
long-range nature of these interactions makes them inherently
difficult for MLIPs to select appropriate descriptors or to obtain
effective learned representations, posing a challenge for predict-
ing liquid densities. As such, accurate density prediction requires
extensive sampling and careful force field representation,46 un-
derscoring the challenge of achieving high accuracy. Moreover,
accurate description of density may require higher-level theories
beyond DFT or exploring alternative machine learning architec-
tures.

Despite these challenges, the model’s ability to generalize
across chemical spaces improved the accuracy in the strongly
out-of-distribution domains. Analysis of latent space suggested
that SevenNet leverages learnings from related chemical moi-
eties and structural motifs to interpolate and predict untrained
regions. Fine-tuning SevenNet for specific cases, as demonstrated
with DMC solvents, significantly improved accuracy in density
and stress predictions, with minimal computational costs. This
approach paves the way for tailoring pretrained models to spe-
cialized applications, making them useful tools for material dis-
covery and optimization in electrolyte engineering. Another po-
tential approach would be to train a model using both an inor-
ganic crystal database and a molecular database69 through multi-
fidelity training,118 which will be explored in a future study. In
conclusion, this work underscores the potential of SevenNet for
advancing the engineering of liquid electrolyte systems, thereby
accelerating the development of next-generation LIBs.

4 Methods

4.1 DFT calculation

All DFT calculations in this work were performed using
the Vienna ab initio simulation package (VASP), employing
the projector-augmented wave (PAW) pseudopotentials.119 The
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional,
based on the generalized gradient approximation (GGA), was
used for electrons.120 For condensed phases of organic molecules,
the van der Waals dispersion interaction plays an important role
in determining quantities such as density and viscosity. Since

semilocal functionals such as PBE do not take into account the dis-
persion interactions, we added the Grimme’s D3 dispersion cor-
rection with Becke-Johnson (BJ) damping.121,122 The dispersion
and coordination cutoff radii in the D3 correction term were set
to 50.2 and 20.0 Å, respectively. The PBE-D3 functional shows
similar accuracy to the PBE0-D3 (hybrid GGA) functional in pre-
dicting dimer interaction energies, while also achieving density
predictions for organic crystals123 and ionic liquids124 that fall
within 1% of experimental values. For molecules and dimers in
vacuum, spin-polarized calculations were performed with a cut-
off energy of 520 eV, while for bulk liquid configuration, a spin-
unpolarized setting was used. However, we found that the spin-
polarization was negligible in all isolated molecules (differences
of < 1 meV/atom and < 3 meV/Å for energies and atomic forces,
respectively). The Brillouin zone was sampled only at the Γ-point.
Concerning the specific PAW pseudopotentials, those without suf-
fixes were used except for Li_sv, in alignment with the calculation
settings in Materials Project.

4.2 Pretrained model

In this work, we utilized a pretrained model SevenNet-0 (ver-
sion 11July2024),56,72 which is based on the architecture of
NequIP.63 SevenNet has achieved high performance in the Mat-
bench Discovery benchmark, which assesses the performance of
pretrained universal force fields on inorganic crystal discovery.73

As a GNN-IP, SevenNet initializes node and edge features from
atomic numbers and relative position vectors, respectively. An
edge connects two nodes if their interatomic distance is less than
a pre-defined cutoff radius. Starting from these features, multi-
ple message-passing layers aggregate information from connected
nodes and edges. After the last message-passing layer updates
node features, they are used to predict total energy by the readout
layer. Forces and stresses are derived from the energy gradient.
Although the SevenNet model hyperparameters remain identical
to its previous version in ref 56, the training dataset has been
updated to the MPtrj dataset without dataset splitting. The learn-
ing rate was initialized at 0.01 and decreased linearly to 0.0001
over 600 epochs. As a result, SevenNet achieves the MAEs of
0.011 eV/atom, 0.041 eV/Å, and 2.78 kbar for energy, forces, and
stresses, respectively.

We employed the Atomic Simulation Environment (ASE) inter-
face125 and the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) package,126 in conjunction with SevenNet,
to compute the structural and dynamical properties of solvents
and electrolytes. The ASE interface was used for static calcula-
tions such as (constrained) relaxation while the LAMMPS package
was used for MD simulations. To account for dispersion inter-
actions absent in the MPtrj dataset, we integrated an in-house
CUDA implementation of Grimme’s D3 dispersion correction with
BJ damping121,122 into SevenNet, ensuring that the calculations
were performed at the PBE-D3 level of theory, which is identical
to the DFT calculation in the previous section. The parameter set
for the dispersion interaction was consistent with that used in the
DFT calculations (see above).
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The data supporting this article have been included as part of the ESI† of this article. Data and processing 
scripts for this paper, including the MD trajectories and fine-tuning dataset, are available at Zenodo at 
https://doi.org/10.5281/zenodo.15205477. The SevenNet code utilized in this study is available in the 
project GitHub repository (https://github.com/MDIL-SNU/SevenNet).
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