Supporting Information

Anion Extraction-Induced Polymorph Control of Transition Metal Dichalcogenides

Dae-Hyun Nam,^{†,§} Ji-Yong Kim,^{†,§} Sungwoo Kang,^{†,§} Wonhyo Joo,[†] Seung-Yong Lee,[†] Hongmin Seo,[†] Hyoung Gyun Kim,[†] In-Kyoung Ahn,[†] Gi-Baek Lee,[†] Minjeong Choi,[†] Eunsoo Cho,[†] Miyoung Kim,^{†,‡} Ki Tae Nam,^{†,‡} Seungwu Han,^{†,‡} and Young-Chang Joo*^{†,‡}

[†]Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

[‡]Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

[§]These authors contributed equally to this work.

*Corresponding author, E-mail: ycjoo@snu.ac.kr

1. Materials and methods

DFT calculation. The density functional theory (DFT) calculations were performed using the Vienna Ab initio Simulation Package (VASP). The projector augmented wave (PAW) method was implemented to consider electron-ion interactions. The generalized gradient approximation was used for the exchange-correlation functional. The energy cutoff for the plane-wave basis was set to 400 eV. The simulations are performed in a 4×4 and 2×4 supercell for 2H-molybdenum disulfide (MoS₂) and 1T'-MoS₂, respectively. We assume that vacancies are generated both sides of the MoS₂. The Brillouin zone was sampled by $9 \times 9 \times 1$ and $3 \times 3 \times 1$ k point meshes for unit cells and 4×4 supercells, respectively. The atomic structures of each simulation cell were relaxed until all forces on the atoms were reduced to within 0.03 eV/Å.

Thermodynamic calculation. The ternary phase diagrams and product distributions were calculated using a thermochemical database program (FactsageTM software). We used the FACT pure substances database (FactPS) and the FACT light metal database (FTlite). The MoS₂-carbon monoxide (CO)-carbon dioxide (CO₂) ternary phase diagram with tie lines was calculated at the pressure and temperature conditions of 760 Torr and 800 °C. A contour map of the product distribution (Mo sulfide, Mo oxide, Mo carbide, and carbon) was constructed according to the combination of starting materials (MoS₂ (s), CO (g), and CO₂ (g)). The processing conditions of the CO:CO₂ relative ratio and the MoS₂ mass necessary to induce Mo sulfidation while preventing other reactions were determined by thermodynamic calculation. The gas and solid product evolution according to the CO ratio was plotted by calculating the Gibbs free energy of each compound. The thermodynamic calculations were carried out with the assumption of an infinite calcination time.

Material fabrication and calcination. Conventional MoS₂ powder (Mw=160.07 g/mol) was purchased from Sigma-Aldrich. For the fabrication of the MoS₂/CNFs by electrospinning, ammonium tetrathiomolybdate (ATTM, (NH4)₂MoS₄, Mw=260.28 g/mol, Sigma-Aldrich) and polyacrylonitrile (PAN, C₃H₃N, Mw=150,000 g/mol, Sigma-Aldrich) solutions were prepared by dissolving 1.4 g ATTM in 5 g N,N-dimethylformamide (DMF, Sigma-Aldrich) and dissolving 0.7855 g PAN in 5 g DMF with stirring at 120 °C for 2 h. The ATTM solution and PAN solution were then mixed and stirred for 10 h. After loading the mixed ATTM + PAN solution into a syringe, electrospinning was carried out at a controlled rate of 0.3 mL/h using a syringe pump (KDS 100, KD Scientific) and an applied potential of 15 kV generated by a voltage source. The MoS₂ powders and electrospun MoS₂/CNFs were calcined at 800 °C under CO/CO₂ gas flow ambient conditions. The CO to CO₂ gas ratio was controlled by mass flow meters (MFC), and the gases were flowed simultaneously to the chamber.

Material characterization. The morphology and atomic arrangement of the MoS₂ layers were analyzed by transmission electron microscopy (TEM, Tecnai F20, FEI, JEM-2100F, JEOL) and Cs-corrected transmission electron microscopy (cs-TEM, JEM-ARF200F, JEOL). For the TEM sample preparation, the MoS₂ powders and MoS₂/CNFs were sonicated in methanol, and the dispersed solution was dropped on a TEM grid and dried. The ratio of 1T-MoS₂ to 2H-MoS₂ was investigated by X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe, Ulvac-PHI). The XPS spectra were calibrated by the C 1s peak at 284.8. The formation of 1T-MoS₂ was confirmed by Raman analysis (LabRAM HV Evolution, HORIBA). The MoS₂ phase was analyzed by X-ray diffraction (XRD, New D8 Advance, Bruker). The oxidation states and local atomic structure of MoS₂ were investigated by X-ray absorption spectroscopy (XAS) at the Mo K-edge. The XAS analysis was performed at the 8C – Nano XAFS beamline at the Pohang light source (PLS-II). Xray absorption near edge structure (XANES) and EXAFS data processing was performed using the ATHENA program. Structural information, including the Mo-S coordination number and atomic distance, was calculated by fitting EXAFS spectra with the ARTEMIS program.

Electrochemical measurement. The effect of the 1T-MoS₂ phase on the hydrogen evolution reaction (HER) activity of the MoS₂/CNFs was investigated in a three-electrode electrochemical H-cell with a 0.5 M H₂SO₄ electrolyte. A saturated calomel electrode (SCE) and Pt wire were used as the reference electrode and counter electrode, respectively. The SCE was converted to a reversible hydrogen electrode (RHE) based on the equation E(RHE) = E(SCE) + 0.242 + 0.059*pH. The iR correction proceeded using the resistance of 5 Ω , which is the solution resistance of 0.5 M H₂SO₄ at room temperature¹. A total of 8 mg MoS₂/CNFs was dispersed in a solution of 200 µL ethanol (C₂H₅OH) + 800 µL deionized (DI) water + 80 µL Nafion (Nafion perfluorinated resin solution, 5 wt.% in a mixture of lower aliphatic alcohols and water, Sigma-Aldrich), and the solution was sonicated for 30 min. The working electrode was prepared by dropping 5 µL solution ink on a glassy carbon electrode (GCE, 3 mm diameter, CHI 104, CH Instrument) and drying it. LSV with a range from 0 to -0.6 V (vs. RHE) was performed with a scan rate of 2 mV/s.

2. Theoretical simulation of 1T-MoS₂ conversion according to the COS formation

To verify the S extraction from MoS₂ by CO/CO₂ calcination, we simulated the gas and solid products that are generated as the CO ratio increases (modeling condition: 10^4 mol CO/CO₂ mixed gas per 1 mol MoS₂). The formable gas products were predicted to be carbon disulfide (CS₂), sulfur dioxide (SO₂), and carbonyl sulfide (COS) (Figure S4a). After the early stage of diminishing S₂

and SO₂, COS was generated with the increasing CO amount (Figure S4b). The amount of MoS₂ decreased in accordance with the increasing COS amount (Figure S4c). Considering Eq. (1), which describes the formation of MoS_{2- δ} by the MoS₂-CO reaction, a possible CO (g) reaction with the S in MoS₂ to generate V_S and COS (g) was predicted.

3. Raman analysis

To verify the 1T phase conversion, we carried out the Raman analysis of the MoS₂ powder with CO ratio of 40% (Figure S9) and MoS₂/CNFs after 5 h calcination with CO ratios of 30, 40, and 60% (Figure S13). They showed clear Raman peaks of J₁, J₂, and J₃, which indicate the existence of the 1T phase.² Compared to the 30 and 40% CO ratios, the relative Raman peak intensity of MoS₂ at the 60% CO, 5 h condition was low. This result is in agreement with the 1T-MoS₂ formation tendency in the XPS analysis.

4. Gas detection experiment

100 mL of outlet gas from the tube furnace was extracted at 800 °C using gas collector, and we injected the collected gas to the detectors. The initial color of COS, SO₂, and CS₂ gas detectors was blue and the color changed from blue to yellow when the gas was detected. We determined the amount of each gas by the portion of yellow region. Gaseous species were detected during the CO/CO₂ calcination of MoS₂ powders and MoS₂/CNFs. The CO/CO₂ calcination of MoS₂ powders for polymorph conversion (800 °C, 40% CO condition) induced the formation of COS, SO₂, and CS₂ gases (Figure S11). COS gas was detected at the temperature ramping region of 200 and 430 °C. It is expected that S extraction (Vs formation) starts at the ramping region of calcination. When we changed the CO ratio (30, 40, 60% CO) in the calcination of MoS₂/CNFs, the amount

of each COS, SO₂, and CS₂ gas was changed accordingly and this trend was similar with the theoretical calculation (Figure S21). As the CO ratio increased, the amount of COS increased (reaction between CO and S in MoS₂). As the CO ratio increased, the amount of SO₂ decreased. This can be explained by the oxygen partial pressure (pO₂) controlled by the equilibrium between CO and CO₂. Also, the amount of CS₂ increased up to 40% CO and decreased at 60% CO. We expect that it is related with the promoted COS formation at 60% CO condition, which can be competitive with CS₂ formation.

5. XANES analysis of 1T-MoS₂/CNFs to investigate the oxidation state of Mo

The Mo oxidation states were identical in the MoS₂/CNFs calcined under 25, 30, and 40% CO ratios at the 1 h and 5 h condition (Figure S15, S16). However, in 5 h, the Mo ions in the MoS₂/CNFs of the 60% CO condition exhibited a higher oxidation state than the others. It seems that this oxidation state difference may affect the decreased degree of polymorph transition toward the T phase in the 60% CO, 5 h calcination.

6. Effect of calcination temperature on 1T-MoS₂ formation

We compared the deconvolution of the Mo 3d XPS spectra of the MoS₂/CNFs at the 40% CO and 5 h calcination at 600, 800, and 1000 °C (Figure S23). The 1T-MoS₂ ratio increased from 23.1% to 69.4% as the calcination temperature decreased from 1000 to 600 °C. The processing parameter (CO ratio, isothermal time, and temperature)-based systematic controllability of this method enables the property optimization of MoS₂ according to the application.

7. Determination of edge energy and nanoparticle morphology for DFT calculations

The edge energies of 2H- and 1T'-MoS₂ were calculated using a ribbon and a nanoparticle model. First, we determine the edge configuration via the same method as in ref. S3³ and S4⁴ using the ribbon model (Figure S24a). The most stable edge terminations of 2H-MoS₂ and 1T'-MoS₂ were 25% sulfidated (Figure 4d, e). As the ribbon model in Figure S24a and Figure 4d (in the main text) inevitably includes both the Mo-edge and S-edge, we calculate the edge energy of the 2H-MoS₂ nanoparticle, which only includes the 50% terminated Mo-edge (Figure S24b). Table S6 shows the energy of 50% terminated Mo-edge of the nanoparticle with respect to the size of the particle. The edge energy was well converged. Then, the 50% terminated S-edge energy was calculated using the ribbon model from Figure S24a. The edge energies of the 50% terminated Mo-edge and S-edge were calculated to be 0.60 eV/Å and 0.40 eV/Å, respectively. Then, energies of 25% terminated Mo-edge and S-edge were calculated using the ribbon structure in Figure 4d in the main text. Both edges in ribbon model of 1T'-MoS₂ are identical, therefore we calculated edge energies of 1T'-MoS₂ directly by the ribbon model in Figure 4e in the main text.

Figure S1. Thermodynamic calculation for controlled pO_2 by the relative ratio between CO and CO₂. pO_2 , controlled by interaction between CO and CO₂, was predicted by FactsageTM based thermodynamic calculation according to the CO/CO₂ relative ratio, and calcination temperature. The relative ratio control between CO and CO₂ at a specific temperature enabled to control the pO_2 without vacuum.

Figure S2. Schematic for displaying the furnace system. The reaction between CO and MoS₂ occurs at the furnace to the formation of 1T-MoS₂. We detected pO₂ by yttria-stabilized-zirconia (YSZ) sensor at the outlet.

Figure S3. Product calculation after CO/CO₂ calcination of MoS₂. Reaction products were calculated by the compositions of MoS₂-CO-CO₂ marked in ternary phase diagram for designing 1T-MoS₂ formation processing window.

Figure S4. Thermodynamic prediction for processing parameter window. V_s -induced 1T-MoS₂ formation can be predicted by the calculated amount of (a) gaseous products, (b) COS gas, and (c) solid products calculated according to the CO amount.

Figure S5. Thermodynamically calculated gaseous products after CO/CO₂ calcination. FactsageTM calculation according to the reaction temperature in various MoS₂ material types: (a) (NH₄)₂MoS₄ powder, (b) MoS₂ powder, and (c) MoS₂/CNFs. The degree of COS formation which reveals the reaction between CO and S atom in MoS₂ increases according to the CO/CO₂ gas amounts: (d) (NH₄)₂MoS₄ powder, (e) MoS₂ powder, and (f) MoS₂/CNFs. Calcination under CO/CO₂ is expected to change the MoS₂ polymorph regardless of the MoS₂ form factor.

Figure S6. MoS₂ structure investigation according to polymorph. MoS₂ atomic structure model in c-axis direction of (a) 2H-MoS₂, (b) 1T-MoS₂, (c) 2T-MoS₂, and (d) 1T + 2T MoS₂. (e) HAADF-STEM image for displaying the atomic arrangement of MoS₂ layers exfoliated from MoS₂ powder after CO/CO₂ calcination. In 2H-MoS₂, 1 Mo and 2 S atoms exist per unit cell in the column direction. 1 Mo and 1 S atoms exist in 1T-MoS₂, and 1 Mo and 1 S, 2 S atoms exist in 2T-MoS₂. There is a brightness difference in Mo 1 and Mo 2 site. It is because more Mo atoms which is heavier than S exist in Mo 1 site. It can be explained by the coexistence of 1T- and 2T-MoS₂ structures.⁵

Figure S7. Annular Bright Field (ABF) STEM analysis of MoS₂ layers. ABF-STEM images of MoS₂ exfoliated from MoS₂ powder to compare the atomic arrangement between (a) before and (b) after CO/CO₂ calcination (40% CO) at 800 °C for 5 h. Purple color is for Mo and yellow color is for S.

Figure S8. HAADF-STEM image of MoS₂ powders after CO/CO₂ calcination (40% CO, 800 °C, 5 h condition). The interface between 1T+2T-MoS₂ and 2H-MoS₂ after calcination indicates the co-existence of both phases in the flake.

Figure S9. Raman analysis for the verification of 1T-MoS₂ formation in MoS₂ powder after the CO/CO₂ calcination (40% CO) at 800 °C for 5 h.

Figure S10. S 2p XPS analysis of MoS₂ powders before and after the CO/CO₂ calcination (40% CO, 800 °C, and 5 h condition).

Figure S11. Gas detection during the CO/CO₂ calcination of MoS₂ powders. (a) Detected amount of COS, SO₂, and CS₂ gases during the calcination at the condition of 40% CO and 800 °C. (b) Photographs of the COS, SO₂, and CS₂ gas detectors. (c) Detected amount of COS gas according to the calcination temperature in the ramping region (40% CO). (d) Photographs of the COS gas detectors to measure COS amount according to calcination temperature.

Figure S12. S 2p XPS spectra of MoS₂/CNFs according to the CO ratio at calcination isothermal times of (a) 1 h and (b) 5 h at 800 °C.

Figure S13. Raman analysis for the verification of 1T-MoS₂ formation in MoS₂/CNFs after the CO/CO₂ calcination (30, 40, and 60% CO) at 800 °C for 5 h.

Figure S14. Contour map for investigating the 1T-MoS₂ formation according to processing parameters. 1T-MoS₂ formation map of MoS₂/CNFs is established by the deconvolution of Mo 3d XPS according to the isothermal time and CO ratio of the CO+CO₂ mixture gas in the calcination.

Figure S15. Mo K-edge XANES spectra for investigating the Mo oxidation states of MoS₂ in MoS₂/CNFs according to the CO ratio of 30 and 60% during 1 h calcination.

Figure S16. Mo K-edge XANES spectra for investigating the Mo oxidation states of MoS₂ in MoS₂/CNFs according to the CO ratio of 25, 30, 40, and 60% during 5 h calcination.

Figure S17. Mo K-edge EXAFS spectra with fitting for investigating the local atomic structures (coordination number, atomic distance) of Mo-S in MoS₂/CNFs according to the CO ratio (25% and 40%) after 5 h calcination.

Figure S18. Mo-K edge EXAFS oscillation function $k^2\chi(k)$ of MoS₂ in MoS₂/CNFs. $k^2\chi(k)$ of MoS₂ in MoS₂/CNFs was investigated according to the CO/CO₂ calcination processing parameters. (a) 30% CO, 1 h, (b) 60% CO, 1 h, (c) 25% CO, 5 h, (d) 30% CO, 5 h, (e) 40% CO, 5 h, and (f) 60% CO, 5 h calcination.

Figure S19. XRD of MoS₂/CNFs was investigated after CO/CO₂ calcination with the isothermal time of (a) 1 h and (b) 5 h. XRD reveals the 1T-MoS₂ (100) and (110) crystallinity in consistent with the XRD pattern of MoS₂ nanosheet structure.⁶

Figure S20. XRD analysis of MoS₂/CNFs after 20% CO ratio calcination. 800 °C calcination at 20% CO ratio condition induced the simultaneous formation of MoS₂ phase and MoO₂ phase. MoO₂ phase at this condition has been predicted by the calculated MoS₂-CO-CO₂ ternary phase diagram. This result reveals that the selective redox reactions between cation and anion can be controlled according to the thermodynamic-calculation guided synthesis information.

Figure S21. Gas detection during the CO/CO₂ calcination of MoS₂/CNFs. Detected amount comparison and photographs of gas detectors for (a, b) COS, (c, d) SO₂, and (e, f) CS₂ according to the CO ratios of 30%, 40%, and 60%.

Figure S22. XPS analysis of Mo 3d in MoS₂/CNFs after 800 °C, 5 h calcination under N₂ ambient. Calcination under N₂ does not induce 1T-MoS₂ formation in MoS₂/CNFs.

Figure S23. Effect of calcination temperature on 1T-MoS₂ formation. (a) XPS analysis of Mo 3d for determining the polymorph ratio of 2H and 1T-MoS₂ in MoS₂/CNFs according to the temperature (600, 800, 1000 °C) of CO/CO₂ calcination (40% CO and 5 h condition). (b) 1T-MoS₂ ratio in MoS₂/CNFs according to the calcination temperature.

Figure S24. Method to calculate edge energies of MoS₂. (a) Simulation cell for ribbon model which exposes both 50% terminated Mo-edge and S-edge for 2H-MoS₂. (b) 2H-MoS₂ nanoparticle with 50% terminated Mo edge.

Figure S25. Application of CO/CO₂ calcination on MoS₂/CNFs fabrication. (a) Schematic for free-standing 1T-MoS₂/CNFs nanofibers cloth by one-step calcination. (b) MoS₂ atomic arrangement inside CNFs. (c) Bright-field TEM images for vertically aligned MoS₂ layers according to the 1T phase ratio.

Figure S26. Tafel slope of MoS₂/CNFs. HER Tafel slope comparison of vertically aligned MoS₂/CNFs according to the 1T-MoS₂ ratio.

Figure S27. Processing window prediction for WS₂ polymorph conversion. Calculated ternary phase diagrams with (a) solid and (b) gas products at 800 °C calcination to predict WS₂, CO, and CO₂ mole fractions for 1T-WS₂ formation. In the ternary diagram, region 1 displays WS₂ (s) + $W_{18}O_{49}$ (s) + gas; region 2 displays WS₂ (s) + WO₂ (s) + gas; region 3 displays WS₂ (s) + WC (s) + gas; and region 4 displays WS₂ (s) + WC (s) + C (s) + gas. (c) W 4f XPS analysis of WS₂/CNFs which displays the formation of 1T-WS₂ after the 800 °C calcination at 50% CO ratio, which has been predicted in WS₂-CO-CO₂ ternary phase diagram.

Method	Fabrication condition	Material	Application
Li intercalation ⁸	Autoclave 220 °C for 72 h in n-butyl lithium	1T-MoS ₂ on RGO	Photocatalytic H ₂ production
Li intercalation ⁹	Heated under Ar in n-butyl lithium for 48 h	1T-MoS ₂	Supercapacitor
Li intercalation ¹⁰	Heated under Ar at 60 °C in n- butyl lithium for 48 h	1T-MoS ₂	Electrochemical H ₂ production
NH ₄ ⁺ intercalation ¹¹	on ¹¹ Autoclave 200 °C for 24 h with $(NH_4)_6Mo_7O_{24}$ + urea		Photocatalytic H ₂ production
Li intercalation ¹²	MoS ₂ heated under Ar at 300 °C for 3 days in lithium borohydrate	1T-MoS ₂	Electrochemical H ₂ production
Li intercalation ¹³	ercalation ¹³ MoS_2 flake under butyllithium for overnight + e beam lithography		Electrochemical H ₂ production
Sulfur vacancy formation (This work)	CO/CO ₂ calcination for 1~5 h	1T-MoS ₂	Electrochemical H ₂ production

Table S1. Cation insertion-based 1T-MoS₂ fabrication methods.⁷

Befo	re reaction ((mol)	After reaction (mol)				
MoS_2	СО	CO ₂	MoS_2	MoO ₂	Mo ₂ C	MoC	С
0.1	0.1	0.8	1.00E-01	2.19E-05	0.00E+00	0.00E+00	0.00E+00
0.1	0.2	0.7	1.00E-01	1.90E-05	0.00E+00	0.00E+00	0.00E+00
0.1	0.3	0.6	1.00E-01	1.63E-05	0.00E+00	0.00E+00	0.00E+00
0.1	0.4	0.5	1.00E-01	1.36E-05	0.00E+00	0.00E+00	0.00E+00
0.1	0.5	0.4	1.00E-01	0.00E+00	8.29E-06	0.00E+00	0.00E+00
0.1	0.6	0.3	1.00E-01	0.00E+00	1.17E-05	0.00E+00	0.00E+00
0.1	0.7	0.2	1.00E-01	0.00E+00	1.63E-05	0.00E+00	0.00E+00
0.1	0.8	0.1	9.99E-02	0.00E+00	0.00E+00	5.36E-05	2.15E-03
0.2	0.1	0.7	0.19998	1.91E-05	0.00E+00	0.00E+00	0.00E+00
0.2	0.2	0.6	0.19998	1.63E-05	0.00E+00	0.00E+00	0.00E+00
0.2	0.3	0.5	0.19999	1.36E-05	0.00E+00	0.00E+00	0.00E+00
0.2	0.4	0.4	0.19999	0.00E+00	6.11E-06	0.00E+00	0.00E+00
0.2	0.5	0.3	0.19998	0.00E+00	9.18E-06	0.00E+00	0.00E+00
0.2	0.6	0.2	0.19997	0.00E+00	1.34E-05	0.00E+00	0.00E+00
0.2	0.7	0.1	0.19996	0.00E+00	0.00E+00	4.44E-05	0.00E+00
0.3	0.1	0.6	0.29998	1.63E-05	0.00E+00	0.00E+00	0.00E+00
0.3	0.2	0.5	0.29999	1.36E-05	0.00E+00	0.00E+00	0.00E+00
0.3	0.3	0.4	0.29999	1.08E-05	0.00E+00	0.00E+00	0.00E+00
0.3	0.4	0.3	0.29999	0.00E+00	6.79E-06	0.00E+00	0.00E+00
0.3	0.5	0.2	0.29998	0.00E+00	1.05E-05	0.00E+00	0.00E+00
0.3	0.6	0.1	0.29997	0.00E+00	0.00E+00	3.49E-05	0.00E+00

Table S2. Thermodynamic calcination of solid products after calculation according to the CO, CO₂, and MoS₂.

0.4	0.1	0.5	0.39999	1.36E-05	0.00E+00	0.00E+00	0.00E+00
0.4	0.2	0.4	0.39999	1.08E-05	0.00E+00	0.00E+00	0.00E+00
0.4	0.3	0.3	0.39999	0.00E+00	4.58E-06	0.00E+00	0.00E+00
0.4	0.4	0.2	0.39998	0.00E+00	7.81E-06	0.00E+00	0.00E+00
0.4	0.5	0.1	0.39997	0.00E+00	0.00E+00	2.62E-05	0.00E+00
0.5	0.1	0.4	0.49999	1.09E-05	0.00E+00	0.00E+00	0.00E+00
0.5	0.2	0.3	0.49999	8.13E-06	0.00E+00	0.00E+00	0.00E+00
0.5	0.3	0.2	0.49999	0.00E+00	5.31E-06	0.00E+00	0.00E+00
0.5	0.4	0.1	0.49998	0.00E+00	9.72E-06	0.00E+00	0.00E+00
0.6	0.1	0.3	0.59999	8.13E-06	0.00E+00	0.00E+00	0.00E+00
0.6	0.2	0.2	0.59999	0.00E+00	3.06E-06	0.00E+00	0.00E+00
0.6	0.3	0.1	0.59999	0.00E+00	6.68E-06	0.00E+00	0.00E+00
0.7	0.1	0.2	0.69999	5.42E-06	0.00E+00	0.00E+00	0.00E+00
0.7	0.2	0.1	0.69999	0.00E+00	3.91E-06	0.00E+00	0.00E+00
0.8	0.1	0.1	0.8	0.00E+00	1.53E-06	0.00E+00	0.00E+00
0	0	1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.1	0.9	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.2	0.8	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.3	0.7	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.4	0.6	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.5	0.5	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.6	0.4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.7	0.3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.8	0.2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.9	0.1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.25E-02

0	1	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.10223
0.1	0	0.9	9.90E-02	1.00E-03	0.00E+00	0.00E+00	0.00E+00
0.2	0	0.8	0.19911	8.90E-04	0.00E+00	0.00E+00	0.00E+00
0.3	0	0.7	0.29922	7.78E-04	0.00E+00	0.00E+00	0.00E+00
0.4	0	0.6	3.99E-01	6.67E-04	0.00E+00	0.00E+00	0.00E+00
0.5	0	0.5	0.49944	5.56E-04	0.00E+00	0.00E+00	0.00E+00
0.6	0	0.4	0.59956	4.45E-04	0.00E+00	0.00E+00	0.00E+00
0.7	0	0.3	0.69967	3.34E-04	0.00E+00	0.00E+00	0.00E+00
0.8	0	0.2	0.79978	2.22E-04	0.00E+00	0.00E+00	0.00E+00
0.9	0	0.1	0.89989	1.11E-04	0.00E+00	0.00E+00	0.00E+00
0.1	0.9	0	1.00E-01	0.00E+00	0.00E+00	4.82E-05	9.19E-02
0.2	0.8	0	0.19996	0.00E+00	0.00E+00	4.29E-05	8.17E-02
0.3	0.7	0	0.29996	0.00E+00	0.00E+00	3.75E-05	7.15E-02
0.4	0.6	0	0.39997	0.00E+00	0.00E+00	3.21E-05	6.13E-02
0.5	0.5	0	0.49997	0.00E+00	0.00E+00	2.68E-05	5.11E-02
0.6	0.4	0	0.59998	0.00E+00	0.00E+00	2.14E-05	4.09E-02
0.7	0.3	0	0.69998	0.00E+00	0.00E+00	1.61E-05	3.06E-02
0.8	0.2	0	0.79999	0.00E+00	0.00E+00	1.07E-05	2.04E-02
0.9	0.1	0	0.89999	0.00E+00	0.00E+00	5.36E-06	1.02E-02
1	0	0	1	0	0.00E+00	0.00E+00	0.00E+00

Befo	re reaction (mol)	After reaction (mol)			
MoS_2	СО	CO_2	COS	SO_2	S_2	CS_2
0.1	0.1	0.8	4.81E-05	2.96E-07	4.22E-08	6.60E-10
0.1	0.2	0.7	4.21E-05	2.48E-08	8.08E-09	5.77E-10
0.1	0.3	0.6	3.61E-05	4.63E-09	2.64E-09	4.95E-10
0.1	0.4	0.5	3.01E-05	1.13E-09	1.03E-09	4.12E-10
0.1	0.5	0.4	4.02E-05	4.96E-10	1.18E-09	9.24E-10
0.1	0.6	0.3	5.68E-05	2.28E-10	1.64E-09	2.46E-09
0.1	0.7	0.2	7.93E-05	8.90E-11	2.34E-09	7.17E-09
0.1	0.8	0.1	1.19E-04	2.39E-11	4.07E-09	3.15E-08
0.2	0.1	0.7	4.73E-05	1.98E-07	3.23E-08	6.50E-10
0.2	0.2	0.6	4.06E-05	1.56E-08	5.93E-09	5.57E-10
0.2	0.3	0.5	3.38E-05	2.68E-09	1.83E-09	4.64E-10
0.2	0.4	0.4	3.34E-05	7.14E-10	1.00E-09	5.64E-10
0.2	0.5	0.3	5.01E-05	3.09E-10	1.45E-09	1.70E-09
0.2	0.6	0.2	7.29E-05	1.16E-10	2.13E-09	5.39E-09
0.2	0.7	0.1	1.11E-04	2.77E-11	3.62E-09	2.49E-08
0.3	0.1	0.6	4.64E-05	1.25E-07	2.37E-08	6.36E-10
0.3	0.2	0.5	3.86E-05	9.04E-09	4.12E-09	5.30E-10
0.3	0.3	0.4	3.09E-05	1.37E-09	1.17E-09	4.24E-10
0.3	0.4	0.3	4.24E-05	4.46E-10	1.24E-09	1.06E-09
0.3	0.5	0.2	6.55E-05	1.57E-10	1.89E-09	3.81E-09
0.3	0.6	0.1	1.02E-04	3.55E-11	3.22E-09	1.86E-08

Table S3. Thermodynamic calcination of gas products after calculation according to the relative amount of CO, CO₂, and MoS₂.

0.4	0.1	0.5	4.51E-05	7.23E-08	1.65E-08	6.19E-10
0.4	0.2	0.4	3.61E-05	4.63E-09	2.64E-09	4.95E-10
0.4	0.3	0.3	3.34E-05	7.14E-10	1.00E-09	5.64E-10
0.4	0.4	0.2	5.68E-05	2.28E-10	1.64E-09	2.46E-09
0.4	0.5	0.1	9.44E-05	4.85E-11	2.89E-09	1.36E-08
0.5	0.1	0.4	4.33E-05	3.70E-08	1.06E-08	5.94E-10
0.5	0.2	0.3	3.25E-05	1.95E-09	1.48E-09	4.45E-10
0.5	0.3	0.2	4.64E-05	3.67E-10	1.35E-09	1.36E-09
0.5	0.4	0.1	8.49E-05	7.10E-11	2.54E-09	9.13E-09
0.6	0.1	0.3	4.06E-05	1.56E-08	5.93E-09	5.57E-10
0.6	0.2	0.2	3.34E-05	7.14E-10	1.00E-09	5.64E-10
0.6	0.3	0.1	7.29E-05	1.16E-10	2.13E-09	5.39E-09
0.7	0.1	0.2	3.61E-05	4.63E-09	2.64E-09	4.95E-10
0.7	0.2	0.1	5.68E-05	2.28E-10	1.64E-09	2.46E-09
0.8	0.1	0.1	3.34E-05	7.14E-10	1.00E-09	5.64E-10
0	0	1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.1	0.9	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.2	0.8	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.3	0.7	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.4	0.6	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.5	0.5	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.6	0.4	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.7	0.3	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.8	0.2	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.9	0.1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
			I			

0	1	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.1	0	0.9	5.36E-05	2.13E-03	1.57E-05	7.36E-10
0.2	0	0.8	5.36E-05	2.13E-03	1.57E-05	7.36E-10
0.3	0	0.7	5.36E-05	2.13E-03	1.57E-05	7.36E-10
0.4	0	0.6	5.36E-05	2.13E-03	1.57E-05	7.36E-10
0.5	0	0.5	5.36E-05	2.13E-03	1.57E-05	7.36E-10
0.6	0	0.4	5.36E-05	2.13E-03	1.57E-05	7.36E-10
0.7	0	0.3	5.36E-05	2.13E-03	1.57E-05	7.36E-10
0.8	0	0.2	5.36E-05	2.13E-03	1.57E-05	7.36E-10
0.9	0	0.1	5.36E-05	2.13E-03	1.57E-05	7.36E-10
0.1	0.9	0	1.19E-04	2.39E-11	4.07E-09	3.15E-08
0.2	0.8	0	1.19E-04	2.39E-11	4.07E-09	3.15E-08
0.3	0.7	0	1.19E-04	2.39E-11	4.07E-09	3.15E-08
0.4	0.6	0	1.19E-04	2.39E-11	4.07E-09	3.15E-08
0.5	0.5	0	1.19E-04	2.39E-11	4.07E-09	3.15E-08
0.6	0.4	0	1.19E-04	2.39E-11	4.07E-09	3.15E-08
0.7	0.3	0	1.19E-04	2.39E-11	4.07E-09	3.15E-08
0.8	0.2	0	1.19E-04	2.39E-11	4.07E-09	3.15E-08
0.9	0.1	0	1.19E-04	2.39E-11	4.07E-09	3.15E-08
1	0	0	0.00E+00	0.00E+00	2.16E-10	0.00E+00

Condition	Mo-S atomic distance (Å)	Mo-S coordination number	σ^2	ΔE_0
30% CO, 1 h	2.4	5.15 ± 0.44	0.0029	-0.96
60% CO, 1 h	2.4	4.65 ± 0.40	0.0030	-1.12
25% CO, 5 h	2.4	5.29 ± 0.44	0.0025	2.48
30% CO, 5 h	2.4	4.72 ± 0.36	0.0028	3.13
40% CO, 5 h	2.4	4.00 ± 0.27	0.0028	3.02
60% CO, 5 h	2.4	3.86 ± 0.39	0.0030	3.64

Table S4. Mo-S atomic distance, Mo-S coordination number of MoS₂, and fitting parameters in MoS₂/CNFs extracted by fitting EXAFS.

Particle size	$E_{ m edge} ({ m eV}/{ m \AA})$
(number of Mo at one edge)	
4	0.59
6	0.61
8	0.61
10	0.60

Table S5. Edge energy of 50% terminated Mo-edge in nanoparticle as a function of particle size.

Table S6. Vacancy formation energies (E_f) of edges at 2H-MoS₂ and 1T'-MoS₂.

	2H ph	ase	1T' p	ohase
	Mo-edge		Edge 1	Edge 2
$E_{\rm f}({ m eV})$	0.70	0.25	0.26	0.79

Strategy	Catalyst	Electrolyte	Tafel slope (mV/dec)	E at 10 mA/cm ² (mV)
This work	Phase and structure modulated 1T- MoS ₂ /CNFs	0.5M H ₂ SO ₄	38.2	80.5
	Double gyroid porous MoS ₂ ¹⁴	0.5M H ₂ SO ₄	50	230
	Defect rich ultrathin MoS ₂ nanosheet ¹⁵	0.5M H ₂ SO ₄	50	190
	MoS ₂ nanobelts ¹⁶	0.5M H ₂ SO ₄	70	140
Increase edge	MoS ₂ monolayer ¹⁷	0.5M H ₂ SO ₄	61	210
active site	MoS ₂ nanoparticle ¹⁸	0.5M H ₂ SO ₄	69	220
	Stepped Edge surface terminated MoS ₂ ¹⁹	0.5M H ₂ SO ₄	59	104
	MoS ₂ nanoplates ²⁰	0.5M H ₂ SO ₄	53	160
	MoS ₂ nano-assembled sphere ²¹	0.5M H ₂ SO ₄	100	200
Ingrassa	Defective O-doped MoS ₂ nanosheet ²²	0.5M H ₂ SO ₄	55	180
defect density	Strained 2H monolayer ²³	0.5M H ₂ SO ₄	60	170
plane	Plasma treated MoS ₂ thin film ²⁴	0.5M H ₂ SO ₄	105	300
	MoS ₂ with sulfur vacancy ²⁵	0.5M H ₂ SO ₄	70	170
	1T-MoS ₂ nanosheets ¹⁰	$0.5M H_2 SO_4$	43	187
	lithiated MoS ₂ vertical layers ²⁶	0.5M H ₂ SO ₄	44	168
Tuning the	Porous 1T-MoS ₂ nanosheets ²⁷	0.5M H ₂ SO ₄	43	153
electronic structure and	Li intercalated 1T-MoS ₂ + CNF ²⁸	0.5M H ₂ SO ₄	62	118
phase	1T-MoS ₂ nanosheets ¹²	0.5M H ₂ SO ₄	40	200
	1T-MoS ₂ nanodot ²⁹	0.5M H ₂ SO ₄	40	140
	1T-MoS ₂ flake on graphite ³⁰	0.5M H ₂ SO ₄	51	250
	MoS ₂ /RGO hybrid ³¹	0.5M H ₂ SO ₄	41	150
Coupling	MoS ₂ /CNT hybrid ³²	0.5M H ₂ SO ₄	44.6	180
with	MoS ₂ /N doped CNT hybrid ³³	0.5M H ₂ SO ₄	40	110
scaffolds	MoS ₂ /ordered mesoporous carbon ³⁴	0.5M H ₂ SO ₄	60	182
	Edge terminated MoS ₂ in 3D Carbon ¹	0.5M H ₂ SO ₄	46.2	110
Amorphous	amorphous MoSx ³⁵	0.5M H ₂ SO ₄	46	160

Table S7. MoS_2 based HER electrocatalyst performance comparison.

Befo	Before reaction (mol)		After reaction (mol)				
WS_2	СО	CO ₂	WS_2	W ₁₈ O ₄₉	WO ₂	WC	С
0.1	0.1	0.8	9.99E-02	6.45E-06	0.00E+00	0.00E+00	0.00E+00
0.1	0.2	0.7	9.99E-02	4.13E-06	0.00E+00	0.00E+00	0.00E+00
0.1	0.3	0.6	9.99E-02	2.89E-06	0.00E+00	0.00E+00	0.00E+00
0.1	0.4	0.5	1.00E-01	0.00E+00	4.06E-05	0.00E+00	0.00E+00
0.1	0.5	0.4	1.00E-01	0.00E+00	0.00E+00	3.83E-05	0.00E+00
0.1	0.6	0.3	9.99E-02	0.00E+00	0.00E+00	6.37E-05	0.00E+00
0.1	0.7	0.2	9.99E-02	0.00E+00	0.00E+00	1.06E-04	0.00E+00
0.1	0.8	0.1	9.98E-02	0.00E+00	0.00E+00	1.93E-04	1.98E-03
0.2	0.1	0.7	2.00E-01	5.35E-06	0.00E+00	0.00E+00	0.00E+00
0.2	0.2	0.6	2.00E-01	3.35E-06	0.00E+00	0.00E+00	0.00E+00
0.2	0.3	0.5	2.00E-01	0.00E+00	4.06E-05	0.00E+00	0.00E+00
0.2	0.4	0.4	2.00E-01	0.00E+00	3.25E-05	0.00E+00	0.00E+00
0.2	0.5	0.3	2.00E-01	0.00E+00	0.00E+00	4.69E-05	0.00E+00
0.2	0.6	0.2	2.00E-01	0.00E+00	0.00E+00	8.28E-05	0.00E+00
0.2	0.7	0.1	2.00E-01	0.00E+00	0.00E+00	1.59E-04	0.00E+00
0.3	0.1	0.6	3.00E-01	4.32E-06	0.00E+00	0.00E+00	0.00E+00
0.3	0.2	0.5	3.00E-01	2.61E-06	0.00E+00	0.00E+00	0.00E+00
0.3	0.3	0.4	3.00E-01	0.00E+00	3.25E-05	0.00E+00	0.00E+00
0.3	0.4	0.3	3.00E-01	0.00E+00	0.00E+00	3.21E-05	0.00E+00
0.3	0.5	0.2	3.00E-01	0.00E+00	0.00E+00	6.15E-05	0.00E+00
0.3	0.6	0.1	3.00E-01	0.00E+00	0.00E+00	1.25E-04	0.00E+00

Table S8. Thermodynamic calcination of solid products after calculation according to the CO, CO₂, and WS₂.

0.4	0.1	0.5	4.00E-01	3.37E-06	0.00E+00	0.00E+00	0.00E+00
0.4	0.2	0.4	4.00E-01	1.93E-06	0.00E+00	0.00E+00	0.00E+00
0.4	0.3	0.3	4.00E-01	0.00E+00	2.44E-05	0.00E+00	0.00E+00
0.4	0.4	0.2	4.00E-01	0.00E+00	0.00E+00	4.25E-05	0.00E+00
0.4	0.5	0.1	4.00E-01	0.00E+00	0.00E+00	9.39E-05	0.00E+00
0.5	0.1	0.4	5.00E-01	2.48E-06	0.00E+00	0.00E+00	0.00E+00
0.5	0.2	0.3	5.00E-01	0.00E+00	2.44E-05	0.00E+00	0.00E+00
0.5	0.3	0.2	5.00E-01	0.00E+00	0.00E+00	2.62E-05	0.00E+00
0.5	0.4	0.1	5.00E-01	0.00E+00	0.00E+00	6.58E-05	0.00E+00
0.6	0.1	0.3	6.00E-01	1.67E-06	0.00E+00	0.00E+00	0.00E+00
0.6	0.2	0.2	6.00E-01	0.00E+00	1.62E-05	0.00E+00	0.00E+00
0.6	0.3	0.1	6.00E-01	0.00E+00	0.00E+00	4.14E-05	0.00E+00
0.7	0.1	0.2	7.00E-01	9.63E-07	0.00E+00	0.00E+00	0.00E+00
0.7	0.2	0.1	7.00E-01	0.00E+00	0.00E+00	2.12E-05	0.00E+00
0.8	0.1	0.1	8.00E-01	0.00E+00	8.12E-06	0.00E+00	0.00E+00
0	0	1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.1	0.9	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.2	0.8	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.3	0.7	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.4	0.6	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.5	0.5	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.6	0.4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.7	0.3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.8	0.2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.9	0.1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

0	1	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.1	0	0.9	9.77E-02	1.26E-04	0.00E+00	0.00E+00	0.00E+00
0.2	0	0.8	1.98E-01	1.12E-04	0.00E+00	0.00E+00	0.00E+00
0.3	0	0.7	2.98E-01	9.83E-05	0.00E+00	0.00E+00	0.00E+00
0.4	0	0.6	3.98E-01	8.43E-05	0.00E+00	0.00E+00	0.00E+00
0.5	0	0.5	4.99E-01	7.02E-05	0.00E+00	0.00E+00	0.00E+00
0.6	0	0.4	5.99E-01	5.62E-05	0.00E+00	0.00E+00	0.00E+00
0.7	0	0.3	6.99E-01	4.21E-05	0.00E+00	0.00E+00	0.00E+00
0.8	0	0.2	7.99E-01	2.81E-05	0.00E+00	0.00E+00	0.00E+00
0.9	0	0.1	9.00E-01	1.40E-05	0.00E+00	0.00E+00	0.00E+00
0.1	0.9	0	9.98E-02	0.00E+00	0.00E+00	1.73E-04	9.18E-02
0.2	0.8	0	2.00E-01	0.00E+00	0.00E+00	1.54E-04	8.16E-02
0.3	0.7	0	3.00E-01	0.00E+00	0.00E+00	1.35E-04	7.14E-02
0.4	0.6	0	4.00E-01	0.00E+00	0.00E+00	1.16E-04	6.12E-02
0.5	0.5	0	5.00E-01	0.00E+00	0.00E+00	9.63E-05	5.10E-02
0.6	0.4	0	6.00E-01	0.00E+00	0.00E+00	7.71E-05	4.08E-02
0.7	0.3	0	7.00E-01	0.00E+00	0.00E+00	5.78E-05	3.06E-02
0.8	0.2	0	8.00E-01	0.00E+00	0.00E+00	3.85E-05	2.04E-02
0.9	0.1	0	9.00E-01	0.00E+00	0.00E+00	1.93E-05	1.02E-02
1	0	0	1.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Before reaction (mol)			After reaction (mol)				
WS_2	СО	CO_2	COS	SO_2	S_2	CS_2	
0.1	0.1	0.8	2.54E-04	1.57E-06	1.18E-06	1.84E-08	
0.1	0.2	0.7	1.65E-04	9.75E-08	1.24E-07	8.87E-09	
0.1	0.3	0.6	1.15E-04	1.49E-08	2.71E-08	5.07E-09	
0.1	0.4	0.5	9.02E-05	3.41E-09	9.30E-09	3.71E-09	
0.1	0.5	0.4	8.52E-05	1.06E-09	5.31E-09	4.14E-09	
0.1	0.6	0.3	1.42E-04	5.71E-10	1.02E-08	1.52E-08	
0.1	0.7	0.2	2.36E-04	2.67E-10	2.08E-08	6.35E-08	
0.1	0.8	0.1	4.28E-04	8.57E-11	5.28E-08	4.09E-07	
0.2	0.1	0.7	2.38E-04	1.00E-06	8.19E-07	1.64E-08	
0.2	0.2	0.6	1.50E-04	5.81E-08	8.17E-08	7.65E-09	
0.2	0.3	0.5	1.01E-04	8.07E-09	1.65E-08	4.18E-09	
0.2	0.4	0.4	8.12E-05	1.74E-09	5.95E-09	3.34E-09	
0.2	0.5	0.3	1.17E-04	7.27E-10	7.97E-09	9.31E-09	
0.2	0.6	0.2	2.07E-04	3.30E-10	1.72E-08	4.34E-08	
0.2	0.7	0.1	3.98E-04	1.00E-10	4.67E-08	3.20E-07	
0.3	0.1	0.6	2.21E-04	5.96E-07	5.39E-07	1.44E-08	
0.3	0.2	0.5	1.34E-04	3.15E-08	4.97E-08	6.39E-09	
0.3	0.3	0.4	9.28E-05	4.13E-09	1.06E-08	3.82E-09	
0.3	0.4	0.3	9.18E-05	9.72E-10	5.83E-09	4.98E-09	
0.3	0.5	0.2	1.76E-04	4.23E-10	1.37E-08	2.73E-08	
0.3	0.6	0.1	3.57E-04	1.25E-10	3.93E-08	2.26E-07	

Table S9. Thermodynamic calcination of gas products after calculation according to the CO, CO₂, and WS₂.

0.4	0.1	0.5	2.01E-04	3.23E-07	3.28E-07	1.23E-08
0.4	0.2	0.4	1.15E-04	1.49E-08	2.71E-08	5.07E-09
0.4	0.3	0.3	8.12E-05	1.74E-09	5.95E-09	3.34E-09
0.4	0.4	0.2	1.42E-04	5.71E-10	1.02E-08	1.52E-08
0.4	0.5	0.1	3.13E-04	1.62E-10	3.18E-08	1.49E-07
0.5	0.1	0.4	1.78E-04	1.53E-07	1.79E-07	1.00E-08
0.5	0.2	0.3	9.74E-05	5.88E-09	1.34E-08	4.01E-09
0.5	0.3	0.2	1.05E-04	8.34E-10	6.88E-09	6.95E-09
0.5	0.4	0.1	2.63E-04	2.22E-10	2.45E-08	8.77E-08
0.6	0.1	0.3	1.50E-04	5.81E-08	8.17E-08	7.65E-09
0.6	0.2	0.2	8.12E-05	1.74E-09	5.95E-09	3.34E-09
0.6	0.3	0.1	2.07E-04	3.30E-10	1.72E-08	4.34E-08
0.7	0.1	0.2	1.15E-04	1.49E-08	2.71E-08	5.07E-09
0.7	0.2	0.1	1.42E-04	5.71E-10	1.02E-08	1.52E-08
0.8	0.1	0.1	8.12E-05	1.74E-09	5.95E-09	3.34E-09
0	0	1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.1	0.9	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.2	0.8	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.3	0.7	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.4	0.6	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.5	0.5	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.6	0.4	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.7	0.3	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.8	0.2	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.9	0.1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
			I			

0	1	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.1	0	0.9	6.38E-04	3.23E-03	5.70E-04	1.05E-07
0.2	0	0.8	6.38E-04	3.23E-03	5.70E-04	1.05E-07
0.3	0	0.7	6.38E-04	3.23E-03	5.70E-04	1.05E-07
0.4	0	0.6	6.38E-04	3.23E-03	5.70E-04	1.05E-07
0.5	0	0.5	6.38E-04	3.23E-03	5.70E-04	1.05E-07
0.6	0	0.4	6.38E-04	3.23E-03	5.70E-04	1.05E-07
0.7	0	0.3	6.38E-04	3.23E-03	5.70E-04	1.05E-07
0.8	0	0.2	6.38E-04	3.23E-03	5.70E-04	1.05E-07
0.9	0	0.1	6.38E-04	3.23E-03	5.70E-04	1.05E-07
0.1	0.9	0	4.28E-04	8.57E-11	5.28E-08	4.09E-07
0.2	0.8	0	4.28E-04	8.57E-11	5.28E-08	4.09E-07
0.3	0.7	0	4.28E-04	8.57E-11	5.28E-08	4.09E-07
0.4	0.6	0	4.28E-04	8.57E-11	5.28E-08	4.09E-07
0.5	0.5	0	4.28E-04	8.57E-11	5.28E-08	4.09E-07
0.6	0.4	0	4.28E-04	8.57E-11	5.28E-08	4.09E-07
0.7	0.3	0	4.28E-04	8.57E-11	5.28E-08	4.09E-07
0.8	0.2	0	4.28E-04	8.57E-11	5.28E-08	4.09E-07
0.9	0.1	0	4.28E-04	8.57E-11	5.28E-08	4.09E-07
1	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
			1			

REFERENCES

- Chung, D. Y.; Yoo, J. M.; Park, S.; Jung, G. Y.; Kang, J. S.; Ahn, C.-Y.; Kwak, S. K.; Sung,
 Y.-E. *Small* 2018, *14*, 1802191.
- Yuqiang, F.; Jie, P.; Jianqiao, H.; Ruichun, L.; Dong, W.; Xiangli, C.; Kejun, B.; Wei, Z.;
 Pan, L.; Gang, M.; et al. *Angew. Chemie* 2018, *130*, 1246–1249.
- Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.;
 Chorkendorff, I.; Nørskov, J. K. J. Am. Chem. Soc. 2005, 127, 5308–5309.
- (4) Bollinger, M. V; Jacobsen, K. W.; Nørskov, J. K. Phys. Rev. B 2003, 67, 85410.
- Mortazavi, M.; Wang, C.; Deng, J.; Shenoy, V. B.; Medhekar, N. V. J. Power Sources 2014, 268, 279–286.
- (6) Yang, L.; Cui, X.; Zhang, J.; Wang, K.; Shen, M.; Zeng, S.; Dayeh, S. A.; Feng, L.; Xiang, B. Sci. Rep. 2014, 4, 5649.
- (7) Lei, Z.; Zhan, J.; Tang, L.; Zhang, Y.; Wang, Y. Adv. Energy Mater. 2018, 8, 1703482.
- (8) Maitra, U.; Gupta, U.; De, M.; Datta, R.; Govindaraj, A.; Rao, C. N. R. Angew. Chemie
 2013, 125, 13295–13299.
- (9) Acerce, M.; Voiry, D.; Chhowalla, M. Nat. Nanotechnol. 2015, 10, 313–318.
- (10) Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. J. Am. Chem. Soc.
 2013, 135, 10274–10277.

- (11) Liu, Q.; Li, X.; He, Q.; Khalil, A.; Liu, D.; Xiang, T.; Wu, X.; Song, L. Small 2015, 11, 5556–5564.
- (12) Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.;
 Chhowalla, M. *Nano Lett.* 2013, *13*, 6222–6227.
- (13) Zhang, J.; Wu, J.; Guo, H.; Chen, W.; Yuan, J.; Martinez, U.; Gupta, G.; Mohite, A.; Ajayan,
 P. M.; Lou, J. *Adv. Mater.* 2017, *29*, 1701955.
- (14) Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Nat. Mater. 2012, 11, 963–969.
- (15) Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W. (David); Xie,
 Y. Adv. Mater. 2013, 25, 5807–5813.
- (16) Yang, L.; Hong, H.; Fu, Q.; Huang, Y.; Zhang, J.; Cui, X.; Fan, Z.; Liu, K.; Xiang, B. ACS Nano 2015, 9, 6478–6483.
- (17) Shi, J.; Ma, D.; Han, G.-F.; Zhang, Y.; Ji, Q.; Gao, T.; Sun, J.; Song, X.; Li, C.; Zhang, Y.;
 et al. ACS Nano 2014, 8, 10196–10204.
- (18) Wang, T.; Liu, L.; Zhu, Z.; Papakonstantinou, P.; Hu, J.; Liu, H.; Li, M. Energy Environ.
 Sci. 2013, 6, 625–633.
- (19) Hu, J.; Huang, B.; Zhang, C.; Wang, Z.; An, Y.; Zhou, D.; Lin, H.; Leung, M. K. H.; Yang, S. *Energy Environ. Sci.* 2017, *10*, 593–603.
- (20) Yan, Y.; Xia, B.; Ge, X.; Liu, Z.; Wang, J.-Y.; Wang, X. ACS Appl. Mater. Interfaces 2013, 5, 12794–12798.

- (21) Chung, D. Y.; Park, S.-K.; Chung, Y.-H.; Yu, S.-H.; Lim, D.-H.; Jung, N.; Ham, H. C.; Park, H.-Y.; Piao, Y.; Yoo, S. J.; et al. *Nanoscale* 2014, *6*, 2131–2136.
- (22) Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2013, 135, 17881–17888.
- (23) Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han,
 H. S.; Manoharan, H. C.; Abild-Pedersen, F.; et al. *Nat. Mater.* 2015, *15*, 48–53.
- (24) Tao, L.; Duan, X.; Wang, C.; Duan, X.; Wang, S. Chem. Commun. 2015, 51, 7470–7473.
- (25) Li, G.; Zhang, D.; Qiao, Q.; Yu, Y.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte,
 F.; Shannon, S.; et al. *J. Am. Chem. Soc.* 2016, *138*, 16632–16638.
- Wang, H.; Lu, Z.; Xu, S.; Kong, D.; Cha, J. J.; Zheng, G.; Hsu, P.-C.; Yan, K.; Bradshaw,
 D.; Prinz, F. B.; et al. *Proc. Natl. Acad. Sci.* 2013, *110*, 19701–19706.
- (27) Yin, Y.; Han, J.; Zhang, Y.; Zhang, X.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X.; Wang, Y.;
 Zhang, Z.; et al. *J. Am. Chem. Soc.* 2016, *138*, 7965–7972.
- (28) Wang, H.; Lu, Z.; Kong, D.; Sun, J.; Hymel, T. M.; Cui, Y. ACS Nano 2014, 8, 4940–4947.
- (29) Tan, C.; Luo, Z.; Chaturvedi, A.; Cai, Y.; Du, Y.; Gong, Y.; Huang, Y.; Lai, Z.; Zhang, X.;
 Zheng, L.; et al. *Adv. Mater.* 2018, *30*, 1705509.
- (30) Liu, L.; Wu, J.; Wu, L.; Ye, M.; Liu, X.; Wang, Q.; Hou, S.; Lu, P.; Sun, L.; Zheng, J.; et al. *Nat. Mater.* 2018, 17, 1108–1114.
- (31) Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am. Chem. Soc. 2011, 133, 7296–7299.

- (32) Yan, Y.; Ge, X.; Liu, Z.; Wang, J.-Y.; Lee, J.-M.; Wang, X. Nanoscale 2013, 5, 7768–7771.
- (33) Li, D. J.; Maiti, U. N.; Lim, J.; Choi, D. S.; Lee, W. J.; Oh, Y.; Lee, G. Y.; Kim, S. O. Nano Lett. 2014, 14, 1228–1233.
- (34) Seo, B.; Jung, G. Y.; Sa, Y. J.; Jeong, H. Y.; Cheon, J. Y.; Lee, J. H.; Kim, H. Y.; Kim, J. C.; Shin, H. S.; Kwak, S. K.; et al. *ACS Nano* 2015, *9*, 3728–3739.
- (35) Vrubel, H.; Hu, X. ACS Catal. 2013, 3, 2002–2011.