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We propose an efficient method that generates amorphous structures based on information on the short-
range order such as bond lengths and coordination numbers. The base amorphous structure is con-
structed in the “seed-and-coordinate” style, which conforms to the given short-range order. The structure
is further annealed to relax the atomic bonding and establish the medium-range order. The computa-

tional cost of the proposed method is less than 10% of the standard melt-quench approach. We combine
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this method with ab initio calculations and generate amorphous structures for various materials such as
a-Si, a-Si0,, a-Ge,Sb,Tes, and a-InGaZnO,. The obtained structures are close to those from melt-quench
simulations in terms of atomic and electronic structures. To substantiate the computational efficiency, we
generate a-GeSe with 512 atoms in the unit cell. The large cell allows us for identifying the mobility edge

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In many applications, crystalline materials are usually favored
owing to good stability and well-defined physical properties. Nev-
ertheless, the metastability or non-equilibrium state of amorphous
structures also leads to useful applications. For example, the struc-
tural flexibility of amorphous SiO, (a-SiO,) has been used for shap-
ing glasses in various forms since long time ago. More recently, the
hydrogenated amorphous Si (a-Si:H) has been widely used in elec-
tronic devices that require a large-area growth of electrically active
materials [1,2]. Furthermore, a-Si is now challenged by another
amorphous material, In-Ga-Zn-0, which shows larger electron
mobilities [3-8] Lastly, the phase-change memory that exploits
reversible switching between amorphous and crystalline phases
of chalcogenides such as Ge,Sb,Tes, is a leading contender for
the next-generation nonvolatile memory [9-12].

The conventional spectroscopic analysis is seriously limited
when studying amorphous materials due to the lack of lattice peri-
odicity. This made the computational modeling on amorphous
phases very informative because it can provide structural and elec-
tronic data that are not accessible in experiment. However, in con-
trast to the crystalline phase, detailed atomic arrangements in
amorphous materials are not available prior to the simulation. This
is a serious hurdle against the atomistic simulation, in which the
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knowledge on atomic positions is a prerequisite. So far, several
methods have been developed to generate amorphous structures
theoretically [13,14]. One example is the bond-switching method
[15], which was successfully applied to generate the continuous
random network (CRN) structures for sp> semiconductors like
a-Si, a-Ge, and amorphous diamond. However, this method is
rather limited to CRN structures with strong covalent characters.
In addition, the ideal CRN model is sometimes inconsistent with
experiment [16]. Activation-relaxation technique (ART) is another
well-established approach [17-20]. In this case, the atomic posi-
tions are activated from the local energy minimum to an adjacent
saddle point and then relaxed to another local minimum following
the downhill paths in the energy landscape.

Perhaps, the most favored method at present is the melt-
quench (MQ) approach based on molecular dynamics (MD) simula-
tion. This mimics the actual MQ process in experiment. If a reliable
force field or interatomic potential is available, the classical MD
simulation will be able to produce amorphous structures very effi-
ciently [21-24]. However, the classical force field is highly limited
in the choice of material classes. Such a limitation does not exist in
the ab initio MD simulation based on the density functional theory
(DFT) in which the atomic forces are obtained through quantum-
mechanical description of electronic states. Therefore, the MQ
method based on DFT-MD has been applied to generating amor-
phous structures of a wide range of materials in a reliable way
[25-33]. However, the computational cost of DFT-MD is so expen-
sive that supercells comprise only about 100-200 atoms in most
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cases. With a typical size of modern computational clusters, it
takes weeks of computational time to obtain one amorphous struc-
ture including 100-200 atoms in the unit cell. If one employs a rel-
atively big supercell with >500 atoms [34]| or generates multiple
amorphous structures for statistical average [35], the computa-
tional time easily scales up to several months.

In this work, we propose a new computational scheme to pro-
duce the amorphous structure, which utilizes DFT but is faster than
the conventional DFT-based MQ method by more than ten folds.
Our method starts with the premise that if the detailed informa-
tion on the short-range order is available beforehand, one can
quickly generate a reasonable amorphous model in one-shot and
only short time annealing would be necessary to refine the struc-
ture. The reference local order could be obtained experimentally
through the reverse Monte Carlo method [36,37] or theoretically
from the MQ amorphous structure. In the latter case, we note that
the short-range order is well addressed in relatively small super-
cells consisting of less than 100 atoms. Therefore, the basic strat-
egy of the present method is that one performs the MQ
simulation on a small cell and extracts the detailed local order,
which is used in generating amorphous structures on a large scale
or multiple times for the statistical average, within a reasonable
computational time.

The paper is organized as follows. In Section 2.1, we define var-
ious parameters required for generating the structure. The detailed
algorithm (so called “seed-coordinate-anneal”) is put forward in
Section 2.2. Test calculations on various amorphous materials (Si,
SiO,, Ge,SbyTes, and InGaZnO,4) are presented in Section 3 with
comparison with reference structures and experiment. Finally,
we summarize and conclude in Section 4.

2. Computational method
2.1. Input parameters defining the local geometry

In the following, we assume that the detailed information on
the short-range order is available from either the reference calcu-
lations involving a small number of atoms or reverse Monte Carlo
analysis on the experimental diffraction data. We then define
variables specifying the local geometry of the reference structures.
The basic bonding information is determined by the atom-resolved
radial distribution function (RDF). For easy understanding, the
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procedure will be described with the specific example of a-GeSe
as shown in Fig. 1. The topmost figures in Fig. 1(a) and (b) are par-
tial RDFs around Ge and Se atoms with the first-dip position indi-
cated by the dashed line. If the fully resolved RDF between X and Y
(X, Y=Ge or Se) has the first peak within the dashed line, it is
assumed that bonds are formed between X and Y. According to this
criterion, bonds are not formed between Se atoms as the first peak
in the bottom picture of Fig. 1(b) lies outside the dashed line. The
bonding ranges for Ge-Ge, Ge-Se and Se-Ge pairs are parameter-

ized by d~,.(Y) and &, (Y), where d_ (Y) is set to the first-dip
position in partial RDF between X and Y while d* (Y) corresponds
to a point where the partial RDF reaches 0.01 (see Fig. 1). By

symmetry, dy;; i (Y) = dy, X).

min(max)(
With the determined bonding ranges, one can obtain the
probability of atom type Y of bonded neighbors, Pfype(Y), and that

of coordination number (CN), PffN(N), around a certain type X.
The results for a-GeSe are shown in Fig. 2. Obviously,

Sy Plpe(Y) = SyPE(N) = 1 for every X.
2.2. Generation of amorphous structures

With d) i ma) (V). Ppe(Y), and Py (N) extracted from the refer-
ence configurations, we proceed on how to distribute atoms in a
way that is consistent with these input parameters. The procedure
is somewhat involved, and for the easy understanding, the flow
chart of the schematic procedure is presented in Fig. 3. Broadly
speaking, the present method consists of two steps in seed-and-
coordinate style. In the first step (the upper box in Fig. 3), a “seed”
atom (indexed with i) is introduced into the simulation box or it is
simply selected if already exists in the box. Then, the seed atom is
coordinated with other atoms (indexed with j) in a way consistent
with the input parameters. This second step corresponds to the
“coordination” mode (the lower box in Fig. 3). In the below, we
provide further details for each step.

(i) Seeding step: if i=j, this atom is not in the simulation box
and should be first put inside the box. This new seed atom
is assigned the atom type of(i) that is randomly chosen
within the given stoichiometry. The CN of this atom
(CNg(i)) is selected on the basis of Pgﬁ) in a probabilistic
way. Then, this ith atom is put at a random position R(i) that
is sufficiently away from the other atoms present in the box,
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Fig. 1. The atom-resolved radial distribution function, g(r), of (a) Ge and (b) Se in a-GeSe. The dashed line and shaded areas indicate the cutoff distance for defining the atomic

bond and the ranges of the bond lengths between atom types, respectively.
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Fig. 2. Probability of (a) atom types and (b) coordination numbers around Ge and Se in a-GeSe.
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Fig. 3. Algorithm of seed-coordinate-anneal (SCA) method.

such that no additional bonds accompany the insertion of
the ith atom. (Specifically, d**) (a(i)) < [R(k) — R(i)| for every
atom k in the box.) If i # j, this means that the seed atom is
already in the box, so one needs only to coordinate it in the
next step.

(ii) Coordinating step: it is first checked whether the present
CN(i) is equal to the target value, CNg(i). If not, this means
that additional bonds should be formed around ith atom.
(Note that CN(i) is always less than or equal to CNg(i)

according to the algorithm.) The index j for the coordinating
atom is then incremented and the new neighboring atom is
introduced into the box after the atom type and coordination
number are assigned as «(j) and CNg(j), respectively. These
two parameters are generated on the basis of Pgﬁfje and
ng>, respectively. Then the jth atom is put at R(j) around

ith atom such that d*? (a(j)) < |R() —R(j)| < ™ (a(j))

min
and d;ﬁf;‘;(a(j)) < |R(k) —R(j)| for all k<i are satisfied. The
former condition ensures that the neighboring atom is in
bond with the seed atom, while the latter condition prevents
the new atom from forming additional bond with the atoms

that are already fully coordinated.

The above two steps are repeated until all atoms are configured
inside the box.

Through the above procedure, the primary amorphous structure
can be obtained. Further relaxation is required because of two rea-
sons: first, we did not consider the angle distribution within the
first shell. Second, any existing medium-range order is missed in
the above procedure. To make up these deficiencies and improve
the quality of amorphous structures, we carry out a short-time
MD simulation below the melting temperature (annealing step).
In the following, we call the whole procedure “seed-coordinate-
anneal” (SCA) method.

3. Results and discussions
3.1. Computational setup

Using the SCA method outlined in the previous section, we gen-
erate amorphous structures for various materials encompassing a-
Si, a-Si0O,, a-Ge,Sb,Tes (a-GST), and a-InGaZnO4 (a-1GZ0), that are
widely used in various applications. We employ the DFT-based
code, Vienna ab initio simulation package (VASP) [38] for all the
computations in this work. The ion-electron interactions are
approximated by the pseudopotentials of the projector-augmented
wave (PAW) type [39]. The generalized gradient approximation
(GGA) [40] is used for the exchange-correlation energy between
electrons. The energy cutoff for a plane-wave basis is chosen to
be 500 eV for every material and the k-point is sampled only at
the gamma point.

Table 1
The simulation parameters for MQ and SCA methods. The cooling rate in MQ is
applied until the temperature is lowered to 300 K.

Methods  Parameter a-Si a-Si0, a-GST  a-IGZO

MQ Melting temperature (K) 2500 3000 1000 2500
Melting time (ps) 20 20 30 20
Cooling rate (K/ps) 250 250 60 250

SCA Annealing temperature (K) 1500 2200 500 1500
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To obtain the input parameters for the SCA method, the refer-
ence amorphous structure is generated for each material through
the standard MQ procedure (see Table 1). Since the SCA method
requires the information on the atomic bonding within the first
shell, relatively small numbers of atoms (64, 96, 72, and 112 atoms
for a-Si, a-Si0,, a-GST, and a-IGZO, respectively) are included at
this stage. Then, the amorphous structures with larger numbers
of atoms are built according to the SCA method. Specifically, 144,
144, and 216 atoms are employed for a-Si, a-SiO,, and a-GST,
respectively. (In the case of a-IGZO, the 112-atom cell is already
enough for characterizing up to the medium-range order and so
the supercell size is not increased.) These SCA structures are then
verified by comparison with the same-size MQ structures with
the same temperature protocol as above. The annealing tempera-
tures used in the SCA methods are also provided in Table 1. Regard-
ing the annealing time, we find that 4 ps is enough for all the
materials. In the below, we compare structural and electronic
properties between MQ and SCA structures.

3.2. Structural properties

Fig. 4 compares the total RDF of each amorphous material
obtained by SCA and MQ methods. The good agreements are found
for all the materials. In particular, it is noticeable that the RDFs
beyond the first shell are also similar even though only the infor-
mation of the first-nearest neighbor was used for generating the
SCA structure. We note that the structure after the seed-coordinate
step deviate significantly from the distribution in Fig. 4, which
means that the annealing step is essential in refining the short-
range order and establishing the medium- or long-range orders.

The average CNs are also similar between the two methods. For
instance, the MQ and SCA methods result in the average CNs of 4
and 2 for Si and O in a-SiO,, respectively. For a-IGZO, the results
of the SCA method (In: 5.8, Ga: 5.2, Zn: 4.7, and O: 3.9) are also
in good agreement with MQ values (In: 5.9, Ga: 5.0, Zn: 4.7, and
0: 3.9). The detailed distributions of CNs are shown in Table 2
for a-Si and a-GST. The structural defect of 3- or 5-fold coordinated
Si atoms in a-Si are found both for MQ and SCA results [41,42]. It is
known that the mixed bonding character in a-GST leads to a
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Table 2
The fraction (in %) of atoms with certain coordination numbers in a-Si and a-GST.

Coordination number
1 2 3 4 5 6

a-Si Si SCA 0.00 0.00 1.39 95.83 2.78 0.00
MQ 0.00 0.00 0.00 94.44 5.56 0.00

a-GST Ge SCA 0.00 0.00 37.50 54.17 4.17 4.17
MQ 0.00 0.00 43.75 50.00 4.17 2.08

Sb SCA 0.00 2.08 70.83 22.92 4.17 0.00

MQ 0.00 0.00 66.67 31.25 2.08 0.00

Te SCA 000 4667 51.67 167 000  0.00
MQ 083 4417 5083 417 000 0.0
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g. 5. Ring distributions in a-GST counted per supercell.

complicated local order of Ge [43,44]. As a result, the CNs in
a-GST are distributed more widely than other amorphous
materials. Such an intricate bonding nature is also revealed in
the SCA structure and the overall distribution of the CNs agrees
well with the MQ results. In addition, we examine in Fig. 5 the ring
structures in a-GST because they are critical to the amorphous
stability and the crystallization speed [45,46]. It is seen that the

(b) @-SiO2

g

Fig. 4. The comparison of the total radial distribution functions, g(r), in SCA and MQ structures. (a) a-Si, (b) a-SiO,, (¢) a-GST, and (d) a-IGZO.
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Table 3

The energy and density ratio of the amorphous materials with respect to the
crystalline counterparts (diamond Si, a-quartz SiO,, cubic GST, and rhombohedral
1GZO).

a-Si a-Si0o, a-GST a-1GZ0
Energy (meV/atom) SCA 268 125 110 156
MQ 245 81 93 159
Density ratio SCA 0.99 0.82 0.93 0.97
MQ 1.01 0.82 0.93 0.98
Exp. 0.98° 0.83° 0.94¢ 0.96¢
2 Ref. [47].
b Ref. [48].
¢ Ref. [49].
4 Ref. [50].

overall agreement is reasonable and both results show consistently
that the 4-fold rings dominate the distribution.

3.3. Energy and density

Next, we examine the energy and density of the amorphous
structures. In Table 3, the energies of the amorphous structures rel-
ative to the crystalline values are shown. It is found that the MQ
and SCA energies show good agreements within 20 meV/atom
except for a-SiO, in which the SCA structure is less stable than
the MQ one by ~40 meV/atom. The analysis on the atomic
structure reveals that this is due to the presence of a pair of
3- and 5-fold Si atoms in the SCA structure in contrast to the MQ
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structure where all Si atoms satisfy 4-fold tetrahedral bonding.
This pair of miscoordinated Si atoms was removed by the addi-
tional MD simulation at 3000 K for 2 ps, and the energy is lowered
to within 10 meV/atom of the MQ value.

The density of the amorphous structure is usually decreased in
comparison with the crystalline phase due to the loose atomic
packing. This is confirmed in the present simulations using both
MQ and SCA methods as shown in Table 3. The agreement between
theories and experiment is reasonable. For a-Si, the density of
amorphous phase is slightly larger in MQ than the crystalline
value, but this due to the statistical fluctuation; we find that the
ratio is reduced to 0.99 when averaged over several MQ structures.

3.4. Electronic structures

Finally, we compare electronic structures between SCA and MQ
methods. Due to the aperiodicity in the amorphous phase, the band
structure is not well defined and the density of states (DOS) is the
main quantity that determines the electrical property of amor-
phous materials. In addition, the localization of the wave function
is also important because it provides the information on the mobil-
ity edge that separates the localized and delocalized (conducting)
states near the Fermi level. The degree of localization can be quan-
tified by the inverse participation ratio (IPR) [51] defined as
follows:
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Fig. 6. Comparison of DOS and IPR near the Fermi level (Er) between SCA and MQ results.
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Fig. 7. (a) Total radial distribution functions of a-GeSe. The DOS and IPR near the Fermi level (Eg) of a-GeSe with (b) 256 and (c) 512 atoms. Dashed lines in (c) show the

approximate position of the mobility edge.

where |a;| is the partial weight on the ith atom. For example, if a
specific state is equally distributed over the N atoms, IPR is equal
to 1/N. The computed DOS and IPR are displayed in Fig. 6 for all
the tested materials. It is found that the magnitude of the funda-
mental gap and the distribution of IPR profile near the Fermi level
agree reasonably between MQ and SCA methods.

In the case of a-IGZO, the characteristic coupling between
metal-s and oxygen-p orbitals in the unoccupied levels leads to
the crystalline dispersion relation even in the amorphous struc-
ture. [52] This means that one can define the effective mass (m")
for the conduction band in a-IGZO. This can be obtained from
energy (&) versus k relation as follows:

m*=h*. e ) (2)
di*|

where h is the Planck constant. We fit the band near the gamma
point and the effective masses are computed to be 0.173 and
0.166 myq for the SCA and MQ structures, respectively, which again
confirms that the electronic structures in the two methods are
similar.

3.5. a-GeSe in large cell

The computational advantage of the SCA method is manifest
when generating a large model of the amorphous structure includ-
ing, for example more than 500 atoms, which would take months
of computational time within the MQ approach. It was reported
that some important electronic properties of the amorphous mate-
rials, for example the mobility edge, are not clearly observed in a
small supercell [53,54]. To demonstrate the usefulness of the pres-
ent method and also to examine the influence of the supercell size
on the electronic structures of the amorphous materials, we made
two structures of a-GeSe with 256 and 512 atoms by applying the
MQ and SCA methods, respectively. (It took us about one week to
generate 512-atom model using 256 cores of Intel Xeon X5570
Nehalem 2.93 GHz.) It is seen that the atomic structures show good
agreement as shown in Fig. 7(a), but the electronic structures in
Fig. 7(b) and (c) are slightly different. In particular, the distribution
of IPR is much smoother in 512-atom structure, and the separation
between delocalized and localized states near the band edge (espe-
cially, the valence band edge) is more evident in the 512-atom
supercell in comparison with 256-atom supercell. The mobility
edge can be estimated by the decaying profile of the IPR values
as the energy shifts away from the Fermi level. Fig. 7(c) shows that
it is ~0.25 (0.55) eV lower (higher) than the edge of occupied

(unoccupied) states. Experimentally, it was reported that the total
width of the localized states is ~0.7 eV [55] which agrees well with
~0.8 eV from the present calculation.

4. Summary and conclusion

In summary, we proposed an efficient scheme dubbed as the
SCA method that generates the amorphous structure. It consists
of (i) seed-and-coordinate step to quickly make the base amor-
phous structure that is consistent with the given short-range order
and (ii) short time annealing to refine the amorphous structures.
The proposed method was more than 10 times faster than DFT-
based MQ methods. Test calculations were performed on various
types of amorphous materials encompassing a-Si, a-SiO,, a-Ge,Sb,_
Tes and a-InGaZnO,, and the reliability and accuracy of the SCA
method were thoroughly verified by comparing RDF, energy, den-
sity, DOS, and IPR with the reference MQ data. The usefulness of
the SCA method was demonstrated by 512-atom a-GeSe model
in which we were able to locate the mobility edge to a good
precision. We believe that the SCA method can be widely used in
generating amorphous structures on a large scale or multiple times
for the statistical average. The program will be available at
http://mtcg.snu.ac.kr.
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