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A B S T R A C T   

With the development of the density functional theory (DFT) and ever-increasing computational capacity, an 
accurate prediction of lattice thermal conductivity based on the Boltzmann transport theory becomes compu
tationally feasible, contributing to a fundamental understanding of thermal conductivity as well as a choice of the 
optimal materials for specific applications. However, steep costs in evaluating third-order force constants limit 
the theoretical investigation to crystals with high symmetry and few atoms in the unit cell. Currently, machine 
learning potentials are garnering attention as a computationally efficient high-fidelity model of DFT, and several 
studies have demonstrated that the lattice thermal conductivity could be computed accurately via the machine 
learning potentials. However, test materials were mostly crystals with high symmetries, and the applicability of 
machine learning potentials to a wide range of materials has yet to be demonstrated. Furthermore, establishing a 
standard training set that provides consistent accuracy and computational efficiencies across a wide range of 
materials would be useful. To address these issues, herein we compute lattice thermal conductivities at 300 K 
using neural network interatomic potentials. As test materials, we select 25 materials with diverse symmetries 
and a wide range of lattice thermal conductivities between 10− 1 and 103 Wm− 1K− 1. Among various choices of 
training sets, we find that molecular dynamics trajectories at 50–700 K consistently provide results at par with 
DFT for the test materials. In contrast to pure DFT approaches, the computational cost in the present approach is 
uniform over the test materials, yielding a speed gain of 2–10 folds. When a smaller reduced training set is used, 
the relative efficiency increases by up to ~50 folds without sacrificing accuracy significantly. The current work 
will broaden the application scope of machine learning potentials by establishing a robust framework for 
accurately computing lattice thermal conductivity with machine learning potentials.   

1. Introduction 

The prediction of thermal conductivity is crucial in selecting mate
rials for various applications [1]. For example, materials with low 
thermal conductivities can be used for thermoelectrics [2–4] or thermal 
insulations [5], while materials with high thermal conductivities are 
suitable for the thermal management of electronic devices [6]. Over the 
last decades, the development of ab initio methods combined with 
increasing computational power enabled a reliable prediction of lattice 
thermal conductivity (κl) [4,7–12]. This is particularly impressive 
because the computed κl spans a wide range of scales from 10− 1 to 103 

Wm− 1K− 1. However, the ab initio evaluation of κl becomes expensive in 

multicomponent or low-symmetry materials due to high computational 
costs in obtaining anharmonic terms in the interatomic force constant. 
For instance, the monoclinic β-Ga2O3 requires thousands of single-point 
density functional theory (DFT) calculations to obtain κl. Several ap
proaches that exploit regression techniques have been proposed to save 
the computational cost, resulting in a significant increase in the 
computational efficiency [13–19]. One example is the compressive 
sensing lattice dynamics method, which uses sparsity in the force con
stants [13,14]. The potential energy surface is Taylor-expanded with the 
high-order force constants (fourth-order and beyond) in this method, 
which is fitted to DFT atomic forces for reference structures [14]. The 
temperature-dependent effective-potential method (TDEP) also expands 
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the potential energy surface but the series is usually truncated beyond 
the third order [15–18]. Through a fit to ab initio molecular dynamics 
(AIMD) trajectories, the finite-temperature effects of higher-order terms 
on the force constant and anharmonicity are incorporated in TDEP. 
Several high-throughput calculations of κl have been reported using 
semi-empirical approaches based on the Debye-Callaway or Leibfried- 
Schlömann models [20–25]. However, for materials outside of the 
dataset used to fit the model, the κl prediction accuracy would 
deteriorate. 

Machine-learning interatomic potentials (MLPs) have recently been 
used as surrogate models of DFT in calculating force constants and κl 
[26–43]. To fit the potential energy surface produced by ab initio cal
culations, preferably DFT [44], MLPs use flexible regression models. For 
regression models, artificial neural networks [45], kernel-based 
methods [46], and linear fitting [47] are popular choices. Once 
trained, MLPs infer the energy, atomic force, and virial stress of the 
given structure with an accuracy comparable to DFT, but at a fraction of 
the cost. Until now, several crystals and alloys have been studied, and κl 
values obtained by MLPs have been close to the reference DFT data 
[26–38,42,43]. Notably, the κl of BAs was successfully predicted by MLP, 
which demands up to four-phonon scattering in the Boltzmann transport 
equation [38]. MLPs are also advantageous for investigating the κl of 
disordered phases such as amorphous [40] and liquid systems [39]. For 
materials dominated by nonperturbative phonon scattering, extensive 
molecular dynamics (MD) simulations are necessary to get an accurate 
κl, which can be handled efficiently by MLP [41]. 

Although previous works support that the MLP is a powerful tool in 
calculating κl, several issues need to be addressed. For example, most 
materials in the previous studies retain high symmetries, three or fewer 
elements, relatively simple configurations, and a limited range of κl (>10 
Wm− 1K− 1). Consequently, it is unclear whether the MLP’s prediction 
accuracy can be maintained for materials in general. Furthermore, rec
ipes for creating the training set differ significantly across the literature, 
making it difficult to establish a standard approach. Motivated by these 
observations, we herein investigate the effect of material complexity and 
different types of training sets on the accuracy and computational cost of 
κl prediction by MLPs. We adopt Behler-Parrinello-type neural network 
potential (NNP) as an MLP model [45] and consider three types of 
training sets: i) snapshots of crystals with randomly displaced atoms 
[42], ii) AIMD trajectory [26–30,33–39], and iii) snapshots of crystals 
with atoms displaced along phonon eigenmodes [40]. Our main goal is 
to develop a recipe for building a training set that predicts the room- 
temperature (300 K) κl of general bulk materials with high efficiency 
and reasonable accuracy. The following is how the remaining sections 
are built: the details of computational methods are described in Section 
2. In Section 3.1, we conduct a preliminary test on the methods of 
constructing training sets. In Section 3.2, based on the method chosen in 
the previous section, we calculate κl of 25 materials with diverse cell 
symmetry and a wide range of κl values and analyze relative errors and 
computational efficiencies. We also check the effect of reducing the size 
of the training set. Finally, we summarize and conclude in Section 4. 

2. Methods 

2.1. Density functional theory calculations 

All the DFT calculations in the present work are performed using 
Vienna Ab initio Simulation Package (VASP) [48–51]. The generalized 
gradient approximation by Perdew–Burke–Ernzerhof (PBE) [52] is used 
for the exchange-correlation functional. The initial structure for each 
material is obtained from the inorganic crystal structure database (ICSD) 
[53], which is relaxed further within DFT. The plane-wave cutoff energy 
and k-points grids for the unit-cell optimization are selected such that 
the energy and atomic forces converge to within 1 meV/atom and 5 
meV/Å, respectively. The selected parameters are summarized in the 
Supplementary Information. In addition, the PREC tag is set to 

“Accurate”, and the convergence criteria for the self-consistent cycle is 
set to 10− 8 eV. Then, the unit cells are fully optimized including lattice 
vectors until remaining atomic forces become smaller than 1 meV/Å. 
The final structure becomes the reference one in generating the training 
set. The computational parameters used for constructing the training 
data will be discussed in Section 3.1. 

2.2. Computation of lattice thermal conductivity 

We calculate the lattice thermal conductivity by solving the phonon 
Boltzmann transport equation linearized under the relaxation-time 
approximation. In the following, we briefly summarize the equations 
involved in computing κl. Detailed discussions can be found elsewhere 
[8,9,54,55]. The potential energy surface U can be expanded as 

U = U0 +
1
2!
∑

ijαβ
Φαβ

ij uα
i uβ

j +
1
3!

∑

ijkαβγ
Φαβγ

ijk uα
i uβ

j uγ
k +⋯, (1)  

where U0 is a constant and Φαβ
ij and Φαβγ

ijk are the second- and third-order 
interatomic force constants, respectively. ui is the atomic displacement 
of the ith atom from the equilibrium position, and α, β, and γ are the 
Cartesian indices. At temperature T, the lattice thermal conductivity 
tensor is expressed as 

καβ =
1
Ω
∑

qs
Cqsvα

qsv
β
qsτqs, (2)  

where Ω is the volume of the crystal and Cqs, vqs, and τqs correspond to 
the heat capacity, phonon velocity, and phonon lifetime with the wave 
vector q and branch index s, respectively. In Eq. (2), the heat capacity is 
defined as 

Cqs = ℏωqs
∂nqs

∂T
, (3)  

where ℏ is the reduced Planck constant, ωqs is the angular frequency of 
the phonon mode qs, and nqs is the Bose–Einstein occupation number at 
temperature T. The phonon lifetime is calculated as the inverse of the 
total scattering rate 
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where Γ+ and Γ− are three-phonon scattering rates, corresponding to 
absorption and emission processes, respectively. Here the phonon mode 
qs is abbreviated to a single index λ. The last term on the right-hand side 
of Eq. (4) corresponds to scattering by isotopes present in nature. The 
three-phonon scattering rates Γ+ and Γ− are expressed as 

Γ+
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4
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Γ−

λλ’λ’’ =
ℏπ
4

nλ’ + nλ’’ + 1
ωλωλ’ ωλ’’

⃒
⃒V −

λλ’λ’’

⃒
⃒2δ(ωλ − ωλ’ − ωλ’’ ). (6) 

In Eqs. (5) and (6), the Dirac delta functions δ impose the energy 
conservation during scattering. The scattering matrix elements V±

λλ’λ’’ are 
computed as 

V±
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∑
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where ei(λ) and Mi are normalized eigenvectors of mode λ and the atomic 
mass of the ith atom, respectively. Here − λ refers to the phonon mode in 
the wave vector − q and branch s. Finally, the summation index i and 
indices j and k in Eq. (7) indicate atoms in the unit cell and supercell, 
respectively. 

The second-order interatomic force constants Φαβ
ij in Eq. (1) are 
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calculated with a finite displacement method using the PHONOPY 
package [56]. The side lengths of supercells used in the computation are 
~20 Å each. The third-order interatomic force constants (Φαβγ

ijk in Eq. 
(1)), also calculated with a finite displacement method, and lattice 
thermal conductivities at 300 K are evaluated by the ShengBTE package 
[9]. Here the supercell dimension is typically ~10 Å with ~6 Å for the 
cutoff radii of the interatomic interaction. The number of single-point 
force calculations increases with the number of possible atomic pairs 
in the supercell, considering the cutoff radii of the interatomic interac
tion. For the q-point sampling, a uniform mesh grid with a density of 
~19 points Å− 1 is used. The Dirac delta functions in Eqs. (5) and (6) are 
approximated by the adaptive Gaussian with a proportionality factor of 
0.1 [9,57]. Under the relaxation time approximation, the Boltzmann 

transport equation is not solved iteratively. Because the current work 
focuses on comparing the results of DFT and NNP, we do not consider 
nonanalytic corrections for LO-TO splitting. The full details on the 
computational parameters used to evaluate force constants can be found 
in the Supplementary Information. 

2.3. Neural network potential 

For training NNPs, we employ the SIMPLE-NN package [58]. Atom- 
centered symmetry functions G2 and G4 [59] are adopted to describe 
radial and angular distributions of neighboring atoms, respectively, 
defined as follows. 

Fig. 1. κl of test materials calculated by density functional theory (DFT) and neural network potentials (NNPs) that are generated with various training sets. (a) 
Random displacements of atoms (RDA), (b) ab initio molecular dynamics (AIMD), (c) superposition of phonon eigenmodes (SPE). (d) Comparison between DFT and 
experimental values. Multiple values for each symbol denote the diagonal components of κl, and gray lines denote the error with a factor of 2. The data for 
experimental κl values are from Ref. [64] (BAs), Ref. [65] (CoSb3), Ref. [66] (β-Ga2O3), Ref. [67] (GaP), Ref. [68] (α-SiO2), and Ref. [69] (Tl9BiTe6). 
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where i, j, and k are atomic indices, Rij is the distance between atom i and 
j, and η, ζ, and λ, are hyperparameters. fc is the cutoff function such that 
atoms outside the cutoff radius Rc do not contribute to the atomic 
energy. 
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(10) 

The cutoff radius is set to 6.5 Å, and 26, 70, and 132 symmetry 
functions are employed for unary, binary, and ternary systems, respec
tively. The selected hyperparameters [60] are summarized in the Sup
plementary Information. The network architecture comprises two 
hidden layers with 60 hidden nodes each and one output layer that 
provides atomic energy. The input vector is decorrelated by principal 
component analysis and then whitened to increase the learning speed 
[60]. The NNP is trained by minimizing the loss function (Γ) defined as 
follows. 
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where M is the total number of structures in the training set, Ni is the 
number of atoms in the ith structure, and Ei

DFT(NNP), Fij
DFT(NNP), and 

Sik
DFT(NNP) are its total energy, atomic force of the jth atom, and the kth 

component of the virial stress tensor, respectively. μ1 and μ2 are the 
parameters that scale the relative importance of atomic force and stress 
with respect to the total energy when minimizing the loss function. We 
set the parameters μ1 and μ2 as 102 and 10− 6, respectively. To avoid 
overfitting and obtain more regularized NNPs, we apply a dropout 
technique in which half of the nodes are randomly selected and fixed at 
each training iteration [61]. The learning rate starts at 0.01 and scales 
by 0.1 every 5000 iterations. We train two independent NNPs and use 
averaged forces to obtain interatomic force constants for given atomic 
displacements. For evaluating atomic forces, we use the LAMMPS 
package [62]. 

3. Results 

3.1. Construction of training sets 

To select an optimal approach to generate training sets, preliminary 
tests are conducted on six materials: BAs, CoSb3, β-Ga2O3, GaP, α-SiO2, 
and Tl9BiTe6 that span three orders of κl from 10− 1 to 102 Wm− 1K− 1. We 
compare the three methods of constructing the training set: (i) random 
displacements of atoms (RDA), (ii) AIMD, and (iii) superposition of 
phonon eigenmodes (SPE). Each atom is displaced with random di
rections and amplitudes in the RDA method. The amplitudes are chosen 
from a normal distribution with a standard deviation of 0.1 Å. The AIMD 
method comprises two steps. First, the AIMD using a canonical ensemble 
is conducted over 1 ps with the time step of 1 fs, at temperatures of 50, 
300, 500, and 700 K, following the choice of the simulation time and 
temperatures in Ref. [30]. (We also tested the AIMD method with NPT 
ensemble, but the resulting κl showed no significant difference.) The 
simulation cell, which contains ~100 atoms, is identical to the one used 
to calculate the third-order interatomic force constants for the most 

cases of the test materials (see Section 2.2, and Supplementary Infor
mation). During AIMD, the computational parameters are slightly 
loosened such that the self-consistency criteria is set to 10− 4 eV with the 
default plane-wave energy cutoff and the Γ-point sampling. Next, we 
sample the 4-ps AIMD trajectories in 10- or 80-fs intervals depending on 
the target size of the training set, and more accurate DFT calculations are 
performed on the sampled structures. This is required because the 
interatomic force constants are sensitive to computational precision, so 
the training data must maintain high precision. In these calculations, the 
plane-wave energy cutoff, k-point grids, and convergence criteria of self- 
consistent calculation are set to the same as those of the unit cell opti
mization (See Section 2.1). Finally, the SPE method requires the second- 
order interatomic force constants that determine the phonon eigen
modes. To roughly calculate the second-order interatomic force con
stants with minimal computational costs, we use the Γ point and a small 
supercell size adopted in calculating third-order interatomic force con
stants (see Section 2.2). Each atom is displaced along the superposed 
phonon modes with random amplitudes and phase factors [19,63]. 

In each of the three approaches described above, the training set 
comprises 400 structures. To calculate third-order interatomic force 
constants, interactions up to ~6 Å or 6th, 7th, 19th, 5th, 11th, and 4th 
nearest neighbors are considered for BAs, CoSb3, β-Ga2O3, GaP, α-SiO2, 
and Tl9BiTe6, respectively. For the phonon dispersion, every NNP 
trained by the three methods reproduces phonon dispersions for all six 
materials (see Fig. S1 in the Supplementary Information). Fig. 1(a)–(c) 
present the comparisons of the diagonal components of the κl tensor 
between NNP and DFT. We also compare the DFT results with experi
mental data in Fig. 1(d) to validate computational settings. It is seen that 
NNP-AIMD shows higher accuracy than other methods, with the error 
for all test materials being less than 30%. Conversely, NNP-RDA and 
NNP-SPE show error levels larger than a factor of 2 for GaP and β-Ga2O3, 
respectively. This means that RDA and SPE method may produce atomic 
displacements that have no bearing on third-order interatomic force 
constants. Since the RDA method does not make any assumptions about 
atomic correlations, it is more likely to produce unphysical atomic 
configurations with small interatomic distances and large repulsive 
atomic forces. This analysis is supported by the phonon scattering rates 
of GaP shown in Fig. 2; while NNP-AIMD shows good accuracy in pre
dicting frequency-scattering rates relations, the other two NNPs show 
large discrepancies, especially NNP-RDA. 

The computational cost of the SPE method varies greatly depending 
on the cell symmetry due to the part on obtaining phonon dispersion. 
The costs of the AIMD and RDA methods, however, are less affected by 
crystal symmetry. Consequently, we conclude that the AIMD method is 
the best for generating training data. In passing, we note that for BAs, the 
present DFT result of κl (~1200) in Fig. 1 is at variance with the previous 
literature (>2000) [30,70]. This is because we did not solve the Boltz
mann transport equation iteratively (i.e., relaxation time approxima
tion), which is known to affect the prediction accuracy for materials 

Fig. 2. The frequency-dependent phonon scattering rates of GaP obtained by 
DFT and NNPs. Scattering rates are averaged over every 1.2 THz intervals, and 
error bars indicate standard deviation within the interval. 
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with high κl [9]. When the Boltzmann transport equation is solved 
iteratively, we find that κl increases to ~1900. 

3.2. Computation of κl for diverse materials. 

This section increases the benchmark cases to 25 materials with 
diverse cell symmetries and a wide range of κl values. The training set for 
each NNP comprises 400 structures generated by the AIMD method. 
Fig. 3(a) compares κl between NNP-AIMD and DFT. The root-mean- 
squared relative error (RMSRE) of test materials is 18.6%. Fig. 3(b) 

shows the results when the training data is reduced, as discussed below. 
For comparison, we gather the κl values computed by MLP and DFT from 
the literature and plot them in Fig. 3(c) (For a fair comparison, only 
those obtained by solving the Boltzmann transport equation are pre
sented). Except for a few materials, the error level in Fig. 3(a) and Fig. 3 
(c) is similar. Fig. 3(d) explicitly compares the error values for common 
materials in Fig. 3(a) and Fig. 3(c). It can be seen that the errors from the 
present approach are comparable to those of other references even 
though we use a consistent choice of the training set. However, BAs 
shows a much larger error than Ref. [38]. It is known that κl of BAs is 

Fig. 3. κl computed by NNP-AIMD trained with (a) 400 and (b) 50 structures sampled from the same AIMD trajectories. (c) DFT and machine learning potentials 
(MLP) results quoted from the literature. (d) Comparison of errors in κl prediction by MLPs for the materials common in (a) and (c). The filled and empty bars are the 
present results and references, respectively. 
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mainly determined by the scattering of acoustic phonon modes. 
Ref. [38] employed NPT simulations and adopted DFT results for the 
harmonic part, which may have contributed to more accurate scatter
ings by acoustic phonons. 

We note that materials with low symmetries often exhibit large er
rors in Fig. 3(a). To be specific, we classify the test materials into four 
groups based on the crystal system: (1) cubic, (2) tetragonal and hex
agonal, (3) orthorhombic, and (4) monoclinic and triclinic. For each 
material, we first select the component of κl showing the largest error. 
For the selected components, we calculate the average error within each 
group. The results are 7.6%, 13.5%, 15.7%, and 24.2% for the group (1)- 
(4), respectively, which shows a trend of increasing errors with low 
crystal symmetries. The low symmetry may require longer AIMD sim
ulations for sufficient sampling. To test this, we extend AIMD of 
K2Bi8Se13, which has P1 space group and thus has the largest error, up to 
2 ps, increasing the training set by two folds. However, the resulting 
NNP for K2Bi8Se13 produces almost identical κl. Therefore, the origin of 
the error and a systematic solution need further investigation in future. 

The high-precision DFT calculations used to construct the training 
set account for about 80% of the computational costs in the present 
work. Consequently, it would be worthwhile to see if the training set 
could be shrunk further to save on computational costs. To this end, we 
investigate the effect of dataset size on κl using α-SiO2 as an example (see 
Fig. 4(a)). First, we choose 12, 28, 52, 100, 200, and 400 structures from 
108-atom AIMD data, which train six different NNPs. The simulation 
time and temperatures are the same as those in the previous section. In 
Fig. 4(b)-(d), we calculate phonon dispersions, scattering rates, and 
cumulative lattice thermal conductivities as a function of the phonon 
mean free path. Fig. 4(b) shows that harmonic properties are well 
described by every NNP, but a slight deviation of the transverse acoustic 
mode is observed along the Γ–A line with the data size of 12. The 
scattering rates and cumulative κl in Fig. 4(c) and 4(d), respectively, are 
well reproduced for data sizes exceeding 28. With data sizes of 12 or 28, 

significant deviations in κl are observed mostly at mean free paths of 
1–10 nm. 

Following the above analysis, we reduce the training set to 50 
structures for 18 materials selected from Fig. 3(a) by sampling more 
sparsely over the same MD trajectories. The κl values compared between 
the resulting NNPs and DFT are shown in Fig. 3(b). The RMSRE of the κl 
is 31%, increasing from 18% in Fig. 3(a), which is reasonable consid
ering the drastic decrease in computational cost. Again, K2Bi8Se13 shows 
the largest error as in Fig. 3(a), which can be understood by the low 

Fig. 4. (a) The unit cell of α-SiO2 and data-size dependence of (b) phonon dispersion, (c) scattering rate, and (d) cumulative lattice thermal conductivity as a function 
of the phonon mean free path. The phonon dispersions are presented up to 10 THz for clarity. Scattering rates are averaged over every 2 THz intervals, and error bars 
indicate standard deviation within the interval. Atomic structures are visualized with VESTA [71]. 

Fig. 5. The computational cost of calculating κl by DFT and NNPs trained by 
400 or 50 structures. The computational cost is normalized with respect to Si 
computed within the fully DFT approach (left scale) or the NNP trained with 50 
structures (right scale). 
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symmetry in the crystal structure. 
Additionally, we analyze the computational efficiency of the NNP- 

based calculation of κl with respect to the DFT-based calculation. 
Fig. 5 shows how the computational cost changes as the material 
complexity increases. The number of structures required to calculate the 
third-order force constants, which encompasses the number of atomic 
elements, the number of atoms in the unit cell, and the crystal symmetry, 
is used to rank the material complexity. The computational cost is 
normalized with respect to that of Si computed using the full DFT 
approach (left scale) or the NNP trained with 50 structures. (right scale). 
Here, the computational cost of the DFT-based κl calculation is the 
summation of those obtaining second- and third-order force constants. 
The majority of the computational costs in NNP-based calculations come 
from building the training set (AIMD and single-point calculations) and 
training NNPs, while the cost of calculating force constants using the 
finite displacement method is negligible. As the material complexity 
increases, the number of structures needed to generate the third-order 
force constants increases rapidly, which is confirmed in Fig. 5. For 
instance, the DFT computational cost for KCuS is more than 20 times 
higher than that of Si. Conversely, NNP-based κl calculations show 
nearly constant computational costs regardless of the material 
complexity. This is because the cost of AIMD and high-precision DFT 
calculations are similar among the materials and the atomic forces can 
be calculated with almost no cost once the NNP has been trained, even 
for a very large supercell. 

To check the applicability for the metallic materials, we additionally 
calculate the κl of Al with the same procedure as in the above. The results 
calculated by DFT and NNP trained with 400 and 50 training sets are 
10.2, 10.6, and 9.9 Wm− 1K− 1, respectively, and the corresponding er
rors are 3.9%, and 2.9%. In addition, the κl result of a narrow-gap ma
terial InAs, which PBE functional misclassifies as a metal, is given with 
the error of 2.3% in Fig. 3(a). Both results of metallic, and narrow-gap 
materials show that the present method can be applied for a wide 
range of materials with reasonable errors. However, for the metallic 
materials, electron-phonon scatterings may have significant effects on 
the κl [72], while our method only considers phonon-phonon scatter
ings. Lastly, special care is needed when calculating the κl of materials 
with high anharmonicity or κl at high temperatures, because we did not 
consider the phonon renormalization and higher-order phonon pro
cesses than third order. 

4. Conclusion 

In conclusion, we propose a standard protocol for building the 
training set of NNPs targeted for computing κl efficiently without fine- 
tuning for each material. The protocol requires 1-ps AIMD simulations 
at various temperatures and accurate single-point calculations for 400 
structures sampled along the MD trajectory. Testing over 25 materials 
with diverse symmetries and wide range of κl, it is confirmed that NNP- 
AIMD provides consistent accuracies comparable to reported values in 
the literature. The uniform cost across material types for the proposed 
method makes it especially efficient for complex materials whose κl 
prediction would be costly in a full-DFT approach. Furthermore, the 
NNPs showed reasonable accuracy even when the training set was 
reduced to 50 structures. The current work will broaden the application 
scope of machine learning potentials by establishing a robust framework 
for accurately computing lattice thermal conductivity with machine 
learning potentials. 
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