AMP²: a fully automated program for ab initio calculations of crystalline materials

Yong Youn^a, Miso Lee^a, Changho Hong^a, Doyeon Kim^a, Sangtae Kim^a, Jisu Jung^a, Kanghoon Yim^b, Seungwu Han^{a,*}

^aDepartment of Materials Science and Engineering, Seoul National University, Seoul

08826, Korea

^bKorea Institute of Energy Research, Daejeon 34129, Korea

* E-mail: hansw@snu.ac.kr

Figure S1 (a) Energy and (b) σ_{max} convergence test of **k**-points for MgO. The vertical dashed lines indicate the converged **k**-points. The convergence of the energy (a) and pressure (b) for MgO with respect to the k-point grid, evaluated at the cutoff energy of 400, 500, and 600 eV. (400 eV is the default value of VASP while AMP² gives 500 eV for the converged E_{cut} .) It is seen that the convergence behavior of k-point is similar among different cutoff energies except for rigid shifts, meaning that the converged k-point grid can be safely determined at the default cutoff energy (as is currently done in AMP²).

Figure S2 Converged k-point grids for default and converged cutoff energies for 30 randomly chosen materials. (BaSn, BrCs, CuCl, CaH₂, CaNi₃, H₂Sr, La₃Sn₇, Li₁₃Sn₅, Mn₃Sn, P₃N₅, NaTaO₃, SiO₂, ZnS, Tl₂S₃, Ga₁₀La₂Ni, GeLaRu, GePtSe, GeRhSc, IrI₃Te₆, InTaS₂, In₂PbS₄, Ir₂Y₂O₇, KLiSe, KNbO₃, K₂SnTe₃, NaNbN₂, Na₆Sn₂Se₇, Nb₄SiTe₄, NiPSe₃, and PdSc₆Te₂) They show perfect agreements. Therefore, we conclude that the converged k-point grid is insensitive to the cutoff energy and the convergence test can be carried out independently with respect to the k point and cutoff energy.

Figure S3 Density of states of Ag₃KTe₂, Ag₇TaS₆, AlAu, BiInO₃, Br₇Ta₃, CuIn₃Zr₅, Ga₂IrLi, GeTl₄S₄, PbI₂, K₂SnTe₅, NaTa₃N₅, and ScZn₂ with the different **k**-point grids. As shown in the figure, k-point doubling is sufficient for DOS figures.

Figure S4 Comparison of theoretical and experimental band gap.[1–6] The solid line indicates perfect agreement with experiment.

Tests for gap-corrected band structure

For materials whose conduction band and valence bands are separated or touch each other (ex. Ag_2O , InAs, Ge, and InSb) within GGA, AMP^2 consistently produced get-corrected band structures as guaranteed by the proposed algorithm. When conduction and valence bands overlap each other, AMP^2 worked well for PdO, PtO, Pb₂PtO₄, and Sn₃O₄ but failed to separate them in Cd₃As₂ and CaPd₃O₄. While it is difficult to specify and quantify a feature in band structures that splits success versus failure, we find that GGA and HSE band structures are significantly different in the two materials. For example, the figure below compares GGA and HSE band structure of CaPd₃O₄, respectively. Based on the HSE result, one can visually identify in the GGA band structure the conduction and valence bands that should move up and down upon gap correction, as indicated by red and blue lines, respectively. One can see that some parts of the lines are broken as indicated by the dashed lines, which is due to the orbital hybridization between conduction and valence bands. This is in contrast with Fig. 5 in the manuscript in which the hybridization is weak. Therefore, the proposed scheme would fail because orbital characters are highly mixed in the broken regions.

Figure S5 Band structure of CaPd₃O₄ using (a) GGA, (b) HSE functionals, respectively.

Figure S6 Comparison of principle components of hole effective mass tensor between AMP² and Boltztrap.[7] The solid line indicates perfect agreement.

Table S1. The list and success/failure of 100 materials.

Chemical formula (ICSD number)

Materials with successful termination (86)						
AgAsSe ₂ (20087)	CoGeNb (623540)	K ₂ CuF ₄ (15372)	LuN (236553)	RbInTe ₂ (75346)	VPO5 (108983)	
AgBr (52246)	Cr(Te ₂ Rh) ₂ (626579)	K ₂ SnBr ₆ (35557)	LuTlS ₂ (642581)	RbSb (280591)	YZn ₃ (106227)	
AlCs ₆ Sb ₃ (300128)	CS ₂ (15672)	KC ₈ (70020)	Mg ₃ Au (58541)	Sc(P ₂ Rh ₃) ₂ (182778)	Y4GaCo4 (20953)	
AlFe ₂ Ni (57808)	Cs ₂ PtI ₆ (201309)	KCd4As3 (262032)	MgB ₂ (108064)	ScInCu ₂ (103009)	Y ₅ S ₇ (43620)	
AsPd5 (44042)	Cu ₃ Sb (44479)	La(Ge ₃ Pt) ₄ (174552)	MnPd ₂ (247774)	SiC (24630)	YIr ₂ (104601)	
B2M02Ir (23786)	FeSi ₂ (24360)	La(Sb ₃ Ru) ₄ (641783)	Na2BiAu (261790)	SrF ₂ (262349)	YSnPd ₂ (105699)	
BaNiO ₂ (15760)	Ga ₂ Se ₃ (35028)	LaCdPd (656599)	Na ₂ HgPb (261791)	SrIr ₂ (104564)	ZnO (190802)	
BeBr ₂ (92584)	Ga ₃ Fe (631756)	LaGa ₂ (103766)	NaMoF ₆ (27484)	SrMnBi ₂ (100025)	Zr ₅ Sb ₃ Ru (650598)	
BiI (1559)	Ge ₂ Mo (16822)	Li ₂ Si (24146)	NaN ₃ (644523)	Ta ₂ N (185289)	ZrAg (58390)	
Ca(InP) ₂ (260562)	Hf ₂ SN ₂ (250915)	Li ₆ Br ₃ N (16798)	Nb7(BC)4 (411624)	Ta5Ge3 (195542)	ZrNi ₃ (105482)	
Ca(MnAs) ₂ (41792)	Hf ₃ B ₂ Ir ₅ (44316)	LiAg ₂ Sn (151446)	PbI ₂ (108906)	TaRu (650690)	ZrSiRu (16306)	
Ca ₂ Ag ₇ (55510)	HfFeCl ₆ (39817)	LiGa ₂ Pt (106717)	PdCl ₂ (421220)	TaSiRh (90435)		
Ca ₃ Al ₇ Ag ₂ (104173)	Hg ₂ Rh (106786)	Lu ₂ ReC ₂ (618232)	PtO ₂ (77654)	TeIr (44870)		
CaSb ₂ (862)	HgCl (157979)	Lu ₃ Al ₂ (57959)	Rb ₂ HgF ₄ (72352)	Ti ₄ P ₃ (648219)		
CdTe (246692)	ICI (23886)	LuIn ₃ (51969)	Rb ₂ TiCl ₆ (26689)	Tl ₂ ZnI ₄ (37099)		

Material with any kinds of errors (14)						
Material	Stage in error	Reason	Category			
BaCoS ₂ (82639)	Magnetic ordering	Not converge	Termination			
Cl ₃ NW (165376)	Effective mass	Memory	Crash			
Cr(Mo ₃ Se ₄) ₂ (626324)	Kptest_w/o U	Not converge	Termination			
Cr ₂ GaC (419116)	Kptest_w/o U	Not converge	Termination			
CsTiBr ₃ (400053)	Magnetic ordering	EDDDAV	Crash			
Fe ₄ O ₅ (185514)	Magnetic ordering	Not converge	Termination			
Mn ₂ Au (58548)	Magnetic ordering	Not converge	Termination			
Mn ₃ As (76409)	Magnetic ordering	Not converge	Termination			
Ni ₂ PdSe ₂ (419760)	Magnetic ordering	Not converge	Termination			
NiF ₃ (87943)	Effective mass	Memory	Crash			
Sr ₃ GeO (413385)	HSE	Memory	Crash			
V ₅ Ge ₃ (44504)	Magnetic ordering	Not converge	Termination			
VS ₂ (68713)	Kptest	Not converge	Termination			
Y(Fe ₂ Si) ₂ (186048)	Magnetic ordering	Not converge	Termination			

When we briefly checked for the magnetic ordering from Ising models, every computational result was reasonable except for FeHfCl₆ and K_2CuF_4 whose spin ordering are mistaken. FeHfCl₆ was reported as antiferromagnetic materials but it has ferromagnetic spin-ordering in AMP².[8] This is because the antiferromagnetic coupling between Fe ions exceeds the present cutoff of 5 Å. When we increased the cutoff distance, AMP² correctly predicts the antiferromagnetic spin ordering. However, energy difference is almost negligible (only 0.4 meV/Fe atom). On the other hand, K_2CuF_4 is a well-known two-dimensional ferromagnetic order is more stable only if Jahn-Teller distortion is taken into account but the structure from ICSD is symmetric without Jahn-Teller distortions. When the symmetry is broken, we find that AMP² produces correct results.

References

- [1] W. Martienssen, H. Warlimont, eds., Springer Handbook of Condensed Matter and Materials Data, Springer-Verlag, Berlin Heidelberg, 2005.
- [2] R.J. Zollweg, Phys. Rev. 111 (1958) 113–119.
- [3] S. Sayan, R.A. Bartynski, X. Zhao, E.P. Gusev, D. Vanderbilt, M. Croft, M.B. Holl, E. Garfunkel, Phys. Status Solidi B 241 (2004) 2246–2252.
- [4] R.C. Whited, C.J. Flaten, W.C. Walker, Solid State Commun. 13 (1973) 1903–1905.
- [5] B. Ealet, M.H. Elyakhloufi, E. Gillet, M. Ricci, Thin Solid Films 250 (1994) 92–100.
- [6] F.C. Brown, C. Gähwiller, H. Fujita, A.B. Kunz, W. Scheifley, N. Carrera, Phys. Rev. B 2 (1970) 2126–2138.
- [7] G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, X. Gonze, Nat. Commun. 4 (2013) 2292.
- [8] A. Vishina, O. Y. Vekilova, T. Bjo ïkman, A. Bergman, H. C. Harper, O. Eriksson, arXiv:1910.00548.
 [9] Y. Ito, J. Akimitsu, J. Phys. Soc. Jpn. 40 (1976) 1333–1338.
- [10] B. Sachs, T. O. Wehling, K. S. Novoselov, A. I. Lichtenstein, M. I. Katsnelson, Phys. Rev. B 88 (2013) 201402.