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Wavelets in all-electron density-functional calculations
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We have developed an all-electron density-functional~AE-DF! program using the Mexican hat wavelet. The
AE-DF program is applied to theab initio all-electron calculations of small molecules as prototype systems,
and the construction scheme of multiresolution support spheres is used to optimize the computational effi-
ciency. Convergences are systematically demonstrated as a function of the number of resolution levels and
support sphere sizes. Detailed analyses of H2, CO, and H2O molecules and the 1s core-ionized C* O and CO*
molecules show good agreement with experiments and other theoretical works. The results indicate that one
can gain computational efficiency by several orders of magnitude over the plane-wave-based methods in these
molecules.@S0163-1829~99!00827-9#
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Choosing an efficient and accurate basis set is a very
portant issue in modernab initio electronic structure calcu
lations. As the application areas are spreading over the
ventional domains of bulk solid-state physics and quant
chemistry of small molecules to the surface chemical en
neering, molecular biology, electronic devices, and na
technology, theab initio method is emerging as a powerf
tool for simulating real material systems. Conventional d
mains of solid state physics and quantum chemistry h
developed two different types of the basis sets, plane wa
~PW! and linear combination of atomic orbitals~LCAO!, re-
spectively. The PW basis set is suitable for the periodic s
tems and has the advantage of a systematic approximatio
the complete basis expansion, whereas the LCAO basis s
suitable for the isolated molecules and requires only a sm
number of basis functions. In spite of the successful appl
tions of these basis sets in the conventional domains, they
not well suited for efficient uses in newly emerging fields
applications.1

Reflecting this recent trend, a multitude of new a
proaches have been introduced to overcome the limitat
of the PW and LCAO basis sets, and these include the a
tive Riemannian metric,2 real-space grid methods,3 and other
O(N) methods.4 Recently, one of the authors introduced t
wavelets as a spatially localized complete basis set for e
tronic structure calculations and demonstrated the pote
efficiency of wavelets using hydrogenlike atoms and an2

1

molecular ion.1 The spatially localized nature of the wavel
basis functions opens a new possibility for the developm
of a multiscale simulation tool in which theab initio, atom-
istic, and continuum simulations can be seamles
integrated.5 The most recently developed multiscale simu
tion program @macroscopic-atomistic-ab initio-dynamics
~MAAD !#5 uses the tight-binding~TB! method for the quan-
tum description of Si since the PW basis cannot be used
PRB 600163-1829/99/60~3!/1437~4!/$15.00
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this application.6 It is challenging to use the waveletab initio
method in place of the TB so that theMAAD program can
achieve the fullab initio capacity at the quantum mechanic
level.

Following the original work by Choet al.,1 there have
been several subsequent works of using wavelets on
pseudopotential calculations and introducing different wa
let basis functions.7–10 However, a systematic test of the a
curacy and efficiency of using wavelets for many-electr
systems has not been performed yet. In this work, we ap
the wavelet basis to the all-electron calculations and perfo
an extensive and systematic analysis to establish the
ciency and the accuracy of wavelets in the all-electr
density-functional calculations.

Basic formalism for wavelet.We briefly discuss the math
ematical background of the wavelet. We direct readers
other references for more complete discussions.1,11 Given the
L2(R3) space, the multiresolution analysis~MRA! is based
on the hierarchical ladder structure of theapproximation
spaces:

•••V22,V21,V0,V1,V2•••5L2.

There is a ‘‘scaling function’’f whose discrete translation
span each approximation space;Vj5span$A2 jf(2 j r2n);
nPZ3%. One can define awaveletspaceWj as Vj 115Vj
% Wj so thatWj describes the details at resolution levelj
11. Wj is expanded by a ‘‘wavelet’’ functionc in the simi-
lar manner for the scaling function.

In principle, there are infinite number of different wav
lets satisfying the above conditions. Until now, only a fe
wavelets are tested for the electronic structu
calculation.1,7–10 The orthogonality and the fast wavele
transform in the Daubechies wavelet facilitate the compu
tion, but its singular shape prevents the significant reduc
1437 ©1999 The American Physical Society
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in the number of bases compared to the PW, even with a
pseudopotential.7,8 On the other hand, the nonorthogon
Mexican hat wavelet adopted in this work is a second der
tive of the Gaussian function and has a smooth shape
able for expanding the Hamiltonian and wave functions.12 Its
scaling function can also be approximated as a Gaussian1,13

Another merit of the Mexican hat wavelet is that the Ham
tonian matrix can be constructed analytically except for
exchange-correlation term~see below!. Since the Mexican
hat wavelet is an overcomplete basis, there exist many
ferent descriptions of a function in an exact sense. Howe
we pratically use only a portion of the wavelet space and
‘‘best’’ description of the wave function is uniquely dete
mined within the selected basis. Actually, we do not find a
numerical instability caused by the overcompleteness in
following calculations.

The number of bases in MRA corresponding to a spec
spatial region increases 8 times per one resolution increm
and the selection of an optimal basis set at each resolu
level is inevitable for the practical applications. In this wor
we follow the original strategy of Choet al.1 and introduce
the support spheres centered at each atomic position. Su
atom-based approach takes into account the fact that
electron wave functions possess high spatial f
quencies mainly near the nucleus. Specifically, we kee
dyadic variation of the support radiiRj5R0•22 j ( j
50,1,2,•••, j max). This form provides a solid reference i
the various examples studied here.

At the j th level, there are two extreme choices of the ba
setVj andV0% W1% W2% •••% Wj . Because the support ra
dii are finite, they are not exactly equivalent. To gauge
effects of this difference, we have performed several
calculations, and the two choices show only slightly differe
convergence profiles as a function ofR0 and j max.

14 Using
only the scaling function simplifies many analytical integr
tions whereas the wavelet plus scaling function is more n
ral for the concept of systematic approximation. It is inte
esting to note that the Gaussian program in quan
chemistry can be viewed as a special case of using sca
functions without MRA.

Construction of Hamiltonian.The Hamiltonian with the
local density approximation~LDA ! ~Ref. 15! is written in the
atomic unit as follows:

H52
1

2
¹22 (

nucleus,j

Z

ur2Rj u
1Vxc@r ;n~r !#1E n~r 8!

ur2r 8u
dr 8,

~1!

wheren(r ) indicates the electron density. In order to min
mize the numerical integrations involved in the exchan
correlation part, we fitVxc with the wavelet basis and evalu
ate all the matrix elements analytically. This is one of t
benefits of using the complete wavelet basis expand
L2(R3) space. The maximum resolution forVxc can be re-
duced sinceVxc varies more slowly than the wave function
The overlap integral between a basis function andVxc is
evaluated through the conventional Gaussian quadrat
adopting 303–603 mesh points. Smaller quadrature points a
sampled for the higher level wavelets with a narrow wid
More sophisticated meshes designed for the electronic s
ture calculation can also be applied to save the computati
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time.16 In Fig. 1, the numerical and the fittedVxc for the
carbon atom are compared, showing excellent agreemen

Keeping the analytic form of the density requires a dou
summation over the basis functions which is computationa
very expensive for a large basis set. We avoid the dou
summation by projecting the charge density onto the ba
set of the wave function under the fixed total charge. Fo
carbon atom, the squared difference between the exact
the projected densities is integrated to be 0.0004 in a.u. un
a proper basis set~see below!. This difference is negligibly
small, and two densities cannot be visually discriminated

It is also possible to fit the Hartree potential, the last te
in the Hamiltonian~1!. It reduces the computational load i
generating the error function. It is found that the inclusion
one or two negative resolution levels~i.e., coarser resolution
levels with larger support radii! improves the description o
the long range tail in the Hartree potential~see Fig. 1!.17 It
should be noted that these additional wavelets do not cha
the size of the Hamiltonian matrix. After the above prelim
nary steps, the evaluation of the matrix elements can be d
very efficiently. We have used the conventional least-squa
fits for each fitting procedure. In addition, the self-consist
electronic iterations are accelerated by the nonlinear Broy
mixing of input and output densities.18

Test on atoms and molecules.We take a simple cubic grid
with the spacing of 2 a.u. for the coarsest level (j 50). In
order to determine the optimalR0 and j max, we perform the
test calculations for each element with a simplified Ham
tonian neglecting electron-electron interaction. In Table I,
list R0 and j max for the minimal basis set reproducing th
exact eigenvalues for the filled states within 0.1 eV. In ad

FIG. 1. Comparison between the fitted and the numerical sha
of the Hartree and the exchange-correlation potential for the car
atom. Spherical symmetry is assumed.

TABLE I. Parameters for a minimal basis set necessary for
0.1 eV accuracy in the eigenvalues of pseudoatoms without
electron-electron interaction.

Element R0(Å ) j max Nbasis

H 3.0 2 55
C 4.8 7 407
O 4.9 8 673

Mg 5.0 10 881
Si 5.0 11 1057
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tion to the dyadic contraction, the support radii under
some adjustments for the optimal choice of the basis set.
meaningful to restate the resolution level in terms of
corresponding energy cutoff in a PW calculation. From
reconstruction of the PW with the Mexican hat wavelet,13 the
effective energy cutoff for thej th resolution level can be
defined asEcut

eff.(2/a0)234 j Ry, wherea0 is the grid spac-
ing in a.u. at j 50. At j 57 with a052 a.u., theEcut

eff is
16 000 Ry which corresponds to 20 million PW’s in
@7 Å #3 cubic box.

Based on the parameters in Table I, we perform the L
calculations on the atoms and molecules. In Fig. 2, we sh
the convergence of the LDA total energy with respect to
resolution level and the support radius. The reference va
is calculated with the one-dimensional atom code assum
the spherical symmetry. It is found that increasing thej max
changes mainly the core states whereas the overall impr
ments are achieved by expandingR0. The conjugate-gradien
method is used for determining the equilibrium geometry
molecules. Vibrational frequencies for H2 and CO are ob-
tained from the Murnaghan equation of state.19 The calcu-
lated results are listed in Table II. They are in good agr
ment with experiments and other theoretical works. In
case of CO, we have also tested the effect of increasing
resolution level around the center of molecule for a m
accurate description of the covalent bonding, but the res
are almost unchanged. This indicates that the support r
determined in the atomic configuration are transferable
different environments. Figure 3 shows the Hellman
Feynman forces on each atom in the H2 molecule. The solid
line is obtained by differentiating of the fitted Murnaghan
equation with respect to the interatomic distance. The ove
coincidence in Fig. 3 implies the absence of the Pulay eff
consistent with the fact that the basis function in MRA
fixed as the atoms move. In Fig. 4, thes-bonding states of
the CO molecule are displayed. The almost cusplike peak
the atomic sites are clearly visible. This figure demonstra
the ability of the Mexican hat wavelet in describing sha
structures.

FIG. 2. Errors in the total energy (5Etot
wavelet 2Etot

12d) of the C
atom with respect to the maximum resolution level (j max) as well as
the support radius for the base level (R0).
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Since the basis function is analytic, the implementation
the generalized gradient approximation~GGA! is easily
done. We have used a recently proposed form of GGA~Ref.
20! to see the difference between the LDA and GGA.
Table III, the results for H2 with the LDA and GGA are
displayed. It is observed that the GGA in general improv
the data toward the experimental values.

As a more stringent test, we have calculated the 1s core-
ionization potentials for the CO molecule with the same b
sis as was used for the neutral case. The theoretical ion
tion potential is the difference between the GGA total ene
of a molecule in the presence of a core hole and that of
neutral molecule. The spin-polarization effects are includ
through the local spin density functional. The calculated
sults are 540.6 and 295.0 eV for CO* and C* O, respectively.
These are in excellent agreement with the experimental
ues 542.6 and 296.2 eV,21 demonstrating that the effects o
relaxations in the core and valence orbitals due to the h
creation are properly described by the given basis set.

The main computational bottleneck in the current imp
mentation of the wavelet lies in the evaluation of the mat

TABLE II. Calculated physical quantities for various molecule
@d: equilibrium distance in Å ,v0: harmonic frequency in cm21,
Ec : cohesive energy in eV~zero point energy is not considered!.#

This work Other worka Exp.

d(H-H) 1.434 1.446 1.401
H2 v0 3951 4188 4400

Ec 4.94 4.91 4.75

d~C-O! 2.14 2.13 2.13
CO v0 2172 2181 2170

Ec 13.16 12.94 11.23

d~H-O! 1.83 1.83 1.81
H2O /~H-O-H! 104.0° 104.9° 104.5°

Ec 11.95 11.64 10.17

aRef. 15.

FIG. 3. Hellmann-Feynman forces on the atoms of the H2 mol-
ecule with respect to the interatomic distance. The solid line i
derivative of the fitted Murnaghan equation of state, and3 and1
are for the left and right H atoms, respectively. The sign of the fo
on the right H atom has been reversed for convenience in pre
tation.
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1440 PRB 60BRIEF REPORTS
elements. This is mainly due to the nonorthogonality of
Mexican hat wavelet. For a large scale simulation, one m
exploit a tight frame of the wavelet for neglecting overl
integrals between the wavelets far apart. TheO(N) method4

is also a promising application field of the wavelet. A
shown above, higher resolutions are necessary mainly fo
core states which are usually not involved in the chem
bonding. We expect that a further reduction in the basis s
can be achieved by freezing the core electrons and lowe
the j max for the valence states.

Summary.We have developed and applied the Mexic
hat wavelet electronic structure program to the all-elect

FIG. 4. Wave functions for thes-bonding states in the CO
molecule with the interatomic distance 2.15 a.u. The orbitals
numbered according to the magnitude of eigenvalues. The origi
the abscissa coincides with the bond center.
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calculations with the LDA and GGA. By systematically tes
ing the resolution levels and the support radii, uniform co
vergence in the total energy is achieved to the desired a
racy despite the wide range of the energy spectrum of
filled electronic states. The control of the resolution lev
according to the individual atomic Coulomb potential mak
it possible to select the basis components for general ap
cations. It is found that the test with the hydrogenlike ato
model provides a good reference for the basis parame
The projections of the potentials and the density onto
wavelet bases greatly enhance the computational efficien
We are currently investigating the applications of the Me
can hat to the pseudopotential calculation and theO(N)
methods.
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TABLE III. Calculated quantities of H2 when GGA is used and
the GGA-induced changes from the LDA results in Table II.

GGA Changes
~this work!

Changes
~other worka!

Exp.

d~H-H! (Å ) 1.402 20.032 20.029 1.401
v0 (cm21) 4122 171 135 4400
Ec ~eV! 4.53 20.41 20.37 4.75

aRef. 15.
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