

ENERGY & MATERIALS

Supporting Information

Unveiling Electrochemical Reaction Pathways of CO_2 Reduction to C_N Species at S-Vacancies of MoS_2

Sungwoo Kang,^[a] Seungwu Han,^[a] and Youngho Kang^{*[b]}

cssc_201900779_sm_miscellaneous_information.pdf

Supporting Information

Unveiling electrochemical reaction pathways of CO₂ reduction to C_N species at S-

vacancy of MoS₂

Sungwoo Kang,^[a] Seungwu Han,^[a] and Youngho Kang^{*[b]}

[a] Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea

[b] Materials Data Center, Korea Institute of Materials Science, Changwon 51508, Korea

Email: thehoya84@gmail.com

Figure S1. Spin-resolved DOSs and partial charge densities of (a) *OCHO, (b) *OH, and (c) *O. Partial DOSs projected on adsorbates (blue) and three nearest neighbor Mo ions (red) are presented. e' and e'' denote the antibonding characters of defect states.

Figure S2. The reaction free energy of the first protonation step of CO_2 depending on potential U.

Figure S3. Free energy diagrams for the lowest energy pathways to CH₄ starting with *COOH (black) and to HCHO with *OCHO (red).

Figure S4. Free energy diagrams for the lowest energy pathways to CH_3CH_2OH led by the adsorption of CO_2 to *HCHO.

Figure S5. Free energy diagrams for the lowest energy pathways to CH₃CH₂CH₂CH₂CH₂OH.

Figure S6. Schematics of every reaction pathway considered in the present study. The number at the bottom of each arrow indicates the reaction free energy in eV unit at -0.4 V vs. RHE. The pathway following red arrows is energetically most favorable.

$\Delta G (\mathrm{eV})$	*H	*0	*OH	*OCHO	*OCH ₂ OH
PBE	0.06	-0.86	-0.11	0.67	0.65
PBE-D2	-0.04	-1.00	-0.18	0.16	0.10
PBE-D3	0.00	-0.99	-0.10	0.27	0.17
PBE-TS	0.00	-0.99	-0.10	0.24	0.10
PBE-TS+SCS	0.03	-0.83	0.02	0.20	0.03
opt888-DF	0.03	-1.02	-0.09	-0.07	-0.02

Table S1. Impact of a type of van der Waals (vdW) functional on the free energy of several adsorbates with respect to the free energy of $V_{\rm S}$ -MoS₂ under the RHE condition. Except for the PBE functional, the results are consistent with each other within 0.2 eV.

Intermediate	File	Charge state	DFT energy (eV)
*	CONTCAR_VS_1-	1-	-351.097
*OCHO	CONTCAR_OCHO_1-	1–	-379.113
*0	CONTCAR_O_0	0	-360.060
*OH	CONTCAR_OH_1-	1–	-364.363
*OCH ₃	CONTCAR_OCH3_1-	1–	-379.684
*OCH ₂ OH	CONTCAR_OCH2OH_1-	1–	-386.161
*OCH ₂ CH ₂ OH	CONTCAR_OCH2CH2OH_0	0	-401.860
*OCH ₂ CH ₂ CH ₂ O	CONTCAR_OCH2CH2CH2O_1-	1–	-414.313
*OCH ₂ CH ₂ CH ₂ OH	CONTCAR_OCH2CH2CH2OH_0	0	-418.640

Table S2. DFT energy of CO_2R intermediates of stable charge state at 0 V vs. RHE. The corresponding CONTCAR files, which include geometry information of supercell, are provided.

Intermediate	File	Charge state	DFT energy (eV)
*	CONTCAR_VS_3-	3-	-353.667
*OCHO	CONTCAR_OCHO_2-	2-	-379.535
*0	CONTCAR_O_0	0	-360.060
*OH	CONTCAR_OH_1-	1-	-364.363
*OCH ₃	CONTCAR_OCH3_2-	2-	-380.105
*OCH ₂ OH	CONTCAR_OCH2OH_3-	3-	-386.887
*OCH ₂ CH ₂ OH	CONTCAR_OCH2CH2OH_1-	1-	-402.648
*OCH ₂ CH ₂ CH ₂ O	CONTCAR_OCH2CH2CH2O_2-	2-	-414.930
*OCH ₂ CH ₂ CH ₂ OH	CONTCAR_OCH2CH2CH2OH_1-	1-	-419.312

Table S3. DFT energy of CO_2R intermediates of stable charge state at -0.4 V vs. RHE. The corresponding CONTCAR files, which include geometry information of supercell, are provided.