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Abstract
Owing to their simultaneous accuracy and computational efficiency, interatomic potentials
machine-learned using first-principles calculation data are promising for investigating phenomena
closely related to atomic motion in various energy materials. We have been working with one type
of these potentials, high-dimensional (HD) neural network potentials (NNPs), and their
applications, but we realized that our current understanding of HD NNPs, e.g. the meaning of the
atomic energy mapping, remained insufficient, and that tuning their prediction performance for
different target properties/phenomena often requires much trial and error. In this article, we
illustrate the usefulness of NNPs through our studies on ion migration and thermal transport in
energy and related materials. We also share our experiences with data sampling and training
strategies and discuss the meaning of atomic energy mapping in HD NNPs.

1. Introduction

In the research and development of novel energy devices, including information devices with low energy
consumption, a deeper understanding of atomic behaviours on the nanoscale has become increasingly
important because of their crucial roles in device operation and/or energy consumption. Controlling atomic
behaviours through the design of materials and devices is highly desirable to further improve device
performance. For example, for resistive switching memory devices, atomic migration is key to the formation
and breaking of conductive paths [1, 2] as it determines the switching speed and retention time. In the case
of power semiconductor devices for the efficient use of electric power, thermal management is crucial [3],
which requires an understanding of the relationship between defects and phonon properties. For secondary
batteries, understanding ion motion is obviously important because ion motion causes charging and
discharging.

Recently, the development of sophisticated methodologies and high-performance computers have made
first-principles calculations a powerful tool for understanding such phenomena. These advances have
enabled, for example, the prediction of migration paths and corresponding energy profiles, phonon band
structures, and thermal conductivities with satisfactory reliability for ideal systems (e.g. perfect crystals).
However, first-principles methods still require heavy computational resources to examine such properties in
realistic systems. On the other hand, conventional interatomic potentials, also called force fields, are
computationally much more efficient, but their prediction performance is often low.

Considering this situation, interatomic potentials constructed with first-principles calculation data and
machine-learning (ML) techniques have attracted considerable attention because they can simultaneously
achieve accuracy and computational efficiency. Potentials constructed using various ML techniques [4–10]
have already been applied to a wide range of systems and phenomena [11–15].
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The high-dimensional (HD) neural network potential (NNP) proposed by Behler and Parrinello [4], one
such ML interatomic potential, seems to be promising for complex systems and phenomena because of its
flexibility, which arises from its massive degrees of freedom, although some other approaches may be
similarly or more promising. In this light, HD NNPs (hereafter referred to simply as NNPs unless this
notation could cause confusion) would be suitable for studies on atomic behaviours in novel energy
materials because the interatomic potentials in such systems must describe interatomic interactions in a wide
variety of local environments. On the other hand, the usefulness of NNPs in such situations should be
carefully examined. The flexibility of NNPs does not guarantee a high prediction performance for the target
physical properties and phenomena, and it may also involve an increase in the computational load owing to
the increased number of parameters and the decreased predictive accuracy because of overfitting.

With these considerations in mind, our goal has been to construct NNPs for various energy materials and
explore the possibilities of this technique. In this article, we describe our recent attempts to construct and
apply NNPs, and different co-authors of the present article collaborated in each described attempt. After
briefly overviewing NNPs in section 2, we present several techniques for reducing the number of
parameters/hyperparameters and/or costs of ML and simulations in section 3. In section 4, the results of
simulations with NNPs on two topics—ion migration and thermal conductivities in energy materials—are
presented. Then, we discuss the meaning and role of atomic energies in NNPs in section 5, and concluding
remarks are given in section 6.

2. Brief overview of neural network potentials

The NNP methods adopted in the studies presented in this article are essentially the same as the one
proposed by Behler and Parrinello [4]. Because several review articles have already described this method
[14, 16], we overview it briefly here.

The basic idea of the NNP method is to relate atomic arrangement information to the total energy using
one or more neural networks (NNs). In a conventional empirical potential, the input (atomic structural
information) and output (energy) are connected using relatively simple analytical functions. In NNPs, such
functions are simply replaced with NNs. An NN (more specifically, a multi-layer perceptron) consists of
input and output layers and one or more hidden layers in between. Each layer consists of several nodes, and
the respective nodes are connected to nodes in the adjacent layers. In addition, we sometimes consider a bias
node. Each node has a value calculated from the values of nodes in the previous layer and the bias node via
activation functions. The activation functions are introduced to enable fitting arbitrary functions [16] and
are often nonlinear functions such as a hyperbolic tangent. In total, taking as an example a case with two
hidden layers and a bias node, the output value is expressed as follows.

E= f out
[
wout
b1 +

k=1∑
n2

wout
k2 f

2

{
w2
bk +

j=1∑
n1

w2
j1f

1

(
w1
bj +

i=1∑
n0

w1
ijGi

)}]
, (1)

where 0, i, and out denote the input, ith hidden, and output layers, respectively; b is the bias node; f α

denotes the activation function which produces the values of nodes in the αth layer; and wα
ij (w

α
bj) denotes the

weight parameter connecting node i in layer α−1 (the bias node) to node j in layer α, which should be
optimised through the training process.

An important feature of the HD NNPs is the representation of the total energy as a sum of the atomic
energies, wherein each atomic energy is expressed via an NN. As a result, the same potential can be used for
systems with different numbers of atoms as long as the constituent elements are the same.

When we use NNPs, we must choose a descriptor set to represent the information of atomic
arrangement. That is, the values of the input nodes are the values of descriptors corresponding to a specific
atomic structure. Cartesian coordinates are not suitable as such descriptors, because their values are not
invariant when the system is translated or rotated or when the same kinds of atoms are exchanged. The
symmetry functions (SFs) introduced by Behler and Parrinello [4] are often used in NNPs for this purpose,
as they guarantee the invariance of the NNP in these situations. Note that although SFs seem to be the most
popular descriptors for NNPs, other descriptors with the same invariance, such as smooth overlap of atomic
positions (SOAPs) [17], bispectrum [6], and Chebyshev [18] and Zernike [19] radial distributions, can be
used instead of an SF.

The following is an example of an SF:

G1 =
∑
i

e−ηR2
i fc (Ri) , (2)
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where Ri is the distance between the central atom and atom i; η is a hyperparameter which should be
determined before training the NN; and fc (r) is the cut-off function, which becomes zero for r larger than
the cut-off distance. Note that the introduction of the cut-off distance is justified by the nearsightedness
principle [20], although in some cases the explicit consideration of long-range interactions may be necessary.

After setting the structure of the NNs (including the choice of descriptors) and their hyperparameters,
the NNP is trained to accurately reproduce the density functional theory (DFT) calculation data (‘training
data’). More specifically, the loss function is minimised. By using the total energies and forces in the training,
the loss function can be expressed as follows:

L= α×MSE({Fνi })+ (1−α)×MSE({Ei}) , (3)

where MSE({Fνi }) and MSE({Ei}) denote the sums of the mean square errors (MSEs) of the forces and
energies, respectively, between the prediction by the NNP and the corresponding first-principles calculation
data.

Notably, several open source codes are available such as aenet [21], PiNN [22], and Amp [23] besides
those that we developed (SIMPLE-NN [24], hdnnpy [25], and DIMP [26]).

3. Techniques for the smart construction of potentials

Several groups have demonstrated that it is possible to construct NNPs that agree well with first-principles
calculations within the training domain. The next concerns are (a) reducing the complexity to minimise the
computational cost of simulations using NNPs and (b) reducing the cost of training while maintaining the
prediction accuracy of NNPs. Here, we focus on these issues.

3.1. Hyperparameter optimisation
The most obvious way to reduce the complexity of NNPs is to optimise the NN hyperparameters, that is, the
number of hidden layers, the number of nodes in each layer, and the choice of activation function. This has
been discussed in, for example [27, 28]. Examples of investigations into NNP accuracy depending on these
parameters can also be found in the supporting information of the papers by Li and Ando [26, 29].
Nevertheless, systematically examining this point seems difficult because the quality of the training dataset
greatly affects the accuracy of the NNP. For example, we often achieve sufficient accuracy by adopting two
hidden layers, and adding more hidden layers does not always drastically improve the accuracy. However, this
may be due to an insufficient number of data to train the complex NNs or inadequate parameter
optimisation. For the latter, we emphasise that increasing the number of hidden layers often requires
sophisticated optimisation techniques to obtain well-optimised results.

There is also room for optimising the number of SFs and the corresponding hyperparameters such as η.
We will discuss the number of SFs in the next subsection. We have not yet systematically investigated
optimising the hyperparameters of each SF, but we can say that radial distribution functions would be useful
in their optimisation: for interatomic distances with high probabilities of neighbouring atoms, a precise
description of the local environment is desirable.

3.2. Smart modelling
Another way to reduce the complexity of NNPs is to simplify the model. Here, we describe two approaches in
this category: one using data science techniques and the other based on physical insights.

3.2.1. Simplification by focusing on a target species
Using a data science approach can reduce the number of SFs. For example, principal component analysis
(PCA) can illustrate the components which are important for describing the local atomic arrangements in the
training data [30]. For instance, we experienced that in reducing the SF components using a PCA, when the
number of descriptors was reduced from 41 to 20, the loss of accuracy for the forces and thermal conductivity
of crystalline Si was insignificant, whereas further reduction (i.e. to 15 or 10) severely decreased the accuracy.

Other data science approaches can also be used to reduce the number of SFs, e.g. the least absolute
shrinkage and selection operator and the genetic algorithm (GA). Li and Ando [31] applied these algorithms
to force prediction models as a function of vectorised structure fingerprints based on the SFs for unary (Cu)
and binary (SiO2) systems. They reduced the number of fingerprints while maintaining the accuracy.
Particularly, using the GA enabled decreasing the number of fingerprints for the SiO2 force prediction model
from 2122 to 256 while maintaining a test error of approximately 0.2 eV Å−1 by linear mixture modelling.
Imbalzano et al [32] examined CUR decomposition, farthest point sampling, and a Pearson
correlation-based method and showed that these approaches are effective in selecting the essential SFs from
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Figure 1. Comparison between total energies of the training set and testing set structures obtained using the DFT and NNP
approaches. The inset shows the MAE distributions (|ENNP − EDFT|) calculated for the two datasets. (Reproduced from [33] with
the permission of the Physical Society of Japan).

large pool of SFs. They also discussed automatic selection of SFs and applied their approach to SOAP
fingerprints.

3.2.2. Simplification based on physical insights
Another way to reduce the number of SF bases is to consider physical insights. Li et al attempted to compose
a simplified model in this manner for a diffusing Cu atom to determine all possible diffusion pathways inside
an amorphous Ta2O5 matrix [33]. In this work, they focused on only Cu as a target species instead of
constructing a full NNP. They assumed a dilute concentration of diffusing Cu atoms and thus neglected
Cu–Cu interactions, and the temperature was low enough to neglect interactions between diffusion and
lattice vibrations. Then, the motion of a Cu atom in the Ta2O5 matrix could be regarded as motion in a
‘medium’. According to this consideration, configuring an NNP for the single species of Cu, which required a
small number of parameters, was sufficient. In their study, the numbers of nodes for the input layer, hidden
layer 1, hidden layer 2, and output layer were 36, 9, 9, and 1, respectively.

First, the target Ta2O5 amorphous structure was created, and the energy change∆E for the arrangement
of Cu atoms in different locations in the amorphous structure was calculated by DFT. At this time, the Cu
atoms were fixed, and the relaxation of the surrounding amorphous structure was considered. As the training
data, 2000 points of different Cu arrangements were acquired by random selection from 503 grid points in
the cell, of which 1800 were used for training and 200 were used for model validation. As a result of the
training, the root mean square error (RMSE) reached 39 meV/system as shown in figure 1; this is enough to
describe the activation barrier of atomic diffusion, which is typically on the order of several hundred
millielectronvolts. Using this potential, they optimised the structure 107 times faster than they did using DFT
calculations, making it practically possible to perform a full search for local minima in the amorphous
model. The result of the full search is briefly reviewed in section 4.1.1.

Notably, the accuracy of molecular dynamics (MD) simulations using the simplified NNPs must be poor
because the simplified NNPs are only a function of descriptors for the guest species and cannot determine
the forces acting on atoms in an amorphous host matrix. Fujikake et al overcame this limitation by including
the difference in the force acting on the host atoms in an ML model to simulate Li diffusion in carbon
materials [13].

Even though simplification by focusing on a target species works for MD simulations, dilute conditions
must be assumed for the target species to accurately model the applied system. To simulate diffusion
processes in dense carrier systems, the NNP should be simplified in a different manner for efficient training.
In the following paragraphs, we describe the simulation study conducted by Li et al on Li ion diffusion in
amorphous Li3PO4 as an example of reducing the number of input SFs from 27 possible types [34].

To reduce the input dimension, Li et al selected the essential SFs by focusing on the structure of Li3PO4.
For example, Li3PO4 has typical units of phosphate (PO4

3−) and Li2O, so O–P–O, O–Li–O, and Li–O–Li
would be considered important angular features. In addition, structures in which P atoms are located at
short distances from each other would rarely occur considering the features of the above-described units, and
thus P–P–P would not contribute much. In this way, they examined whether the NNP could be simplified
without reducing the accuracy by considering structural constraints.

Compared with an NNP including all 27 possible types of SFs, they succeeded in constructing an NNP
with the same accuracy using 13 types of SFs: nine radial SFs and only four angular SFs. This reduced the
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Figure 2. Flow chart of on-the-fly sampling.

number of model parameters to about half, and thus the authors simplified the training process by selecting
essential SFs.

3.3. Smart sampling to construct NNPs with high accuracy
The appropriate collection of training data is essential to construct highly accurate NNPs. The training
dataset is preferably small while including the essential features necessary to accurately represent the
simulated phenomenon. In this subsection, we discuss three smart sampling approaches which we have
attempted to achieve preferable data collection.

3.3.1. Heuristic sampling of essential features
Li et al [34] demonstrated heuristic sampling based on essential features for the simulation of Li ion
diffusion in amorphous Li3PO4. Three different classes of initial configurations were constructed using a
supercell containing several numbers of atoms up to 64: (1) a snapshot of the structure obtained from the
MD trajectory in the temperature range of 300–4000 K, (2) a defect structure extracted from Li or Li2O from
the class (1) configuration, and (3) an atomic configuration of the transition states of Li ion diffusion
obtained by a nudged elastic band (NEB) simulation with an NNP trained by data classes (1) and (2). Class
(3) configurations are difficult to sample directly by MD simulation because they are ‘rare events’. Therefore,
the heuristic sampling of such rare events was efficient. The basic idea of heuristic sampling to improve the
transition barrier accuracy of NNPs was reported by Peterson [35].

In total, 38 592 configurations for the three classes and energy results from DFT calculations were
generated, 80% of which were used as training data and 20% as testing data. As a result of the training, the
RMSE reached 5 meV/atom for the training sets and 5.6 meV/atom for the testing sets. Another verification
test was also examined for large-scale structural data using a 500-step MD trajectory of the system with 128
atoms at 4000 K. The RMSE of the energy prediction was 6.2 meV/atom, which was similar to the error in
the training and testing sets. This suggests the efficacy of the ‘scaling-up strategy’, wherein training is
performed using small configuration datasets with a low computational cost and the model is applied to a
large-scale simulation. Because NNP modelling considers the local environment (as a function of a set of
SFs) of each atom, training data consisting of small-scale atomic configurations can represent potentials in
large-scale atomic configurations.

3.3.2. On-the-fly sampling
Heuristic sampling does not give a sufficient sampling size criterion to achieve the required accuracy for
simulating an objective system. Thus, another smart sampling approach, ‘on-the-fly sampling’, has attracted
attention to overcome this weak point. It is based on the ML technique called ‘active learning’ and
systematically improves the model accuracy by checking the ‘model uncertainty’.

On-the-fly sampling is performed according to the following procedure. (1) First, an NNP model with a
coarse potential accuracy is constructed from a small set of training data of about 1000. (2) Next, an MD
simulation using the NNP model is executed to acquire new training data candidates as time evolves. (3) The
model uncertainty is evaluated in terms of the acquired energy prediction data from the present NNP model.
If the uncertainty is higher than a certain threshold, the acquired data are added to the training dataset, and
the model is re-optimised. If the uncertainty falls below the threshold, the process returns to step 2 without
re-optimising the model. (4) Data collection is terminated according to a criterion such as completing a
predetermined number of steps. This process is schematically summarised in figure 2.

The key to on-the-fly sampling is evaluating the model uncertainty. Artrith and Behler defined the model
uncertainty as a ‘prediction disagreement’ between a set of NNP models with different network topologies
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[16, 36]. A set of NNPs optimised for a common dataset predict energies at each step of the MD simulation,
and their difference (or variance) is defined as the model uncertainty. The DFT simulation is run again, and
the atomic configuration and DFT total energy are appended to the training dataset if the model uncertainty
with regards to the acquired MD configuration is higher than a selected criterion.

Li and Ando applied this method to sample amorphous Si (a-Si) reference data along with the
melt-quenching method for amorphous modelling [29]. Two different NNPs with 48 nodes in the input layer
and three hidden layers were prepared, one with 20 nodes and the other with 25 nodes in the hidden layer.
The structure was first determined for an eight-atom system, and then the scale was increased to 32, 64, 96,
and 128-atom systems according to the scaling-up strategy. Finally, 49 544 structure-energy data points were
collected. The RMSE of the energy prediction was 5.9 meV/atom in the training set (90% of the reference
data) and 6.2 meV/atom in the testing set (10% of the reference data). The trained NNP was also applicable
to a-Si systems on a larger scale than the system in the training dataset: the RMSE of the energy prediction
for a 216-atom structure (larger than the reference structures) was 5.3 meV/atom, which is comparable to
that of the training and testing sets.

3.3.3. Other sampling strategies
Estimating the model uncertainty for the acquired data is not the only way to find candidates for merging
into training datasets. From abundant structures obtained by low-cost simulations with a roughly trained
NNP, unique structures, i.e. structures distinct from those already in the training dataset, can be identified
based on data similarity with PCA, in a way analogous to atomic feature representations [30]. Structures
with principal component values far from those of the pre-existing data are selected for addition to the
dataset. Shimizu et al applied this scheme to Au–Li binary systems [37], and the resulting NNP predicted the
mixing energy and dynamical behaviour well.

Data accumulation assisted by classical MD is another approach. Structures for the training dataset are
selected from classical MD trajectories, and DFT total energies are calculated only for the selected structures.
Minamitani et al adopted this strategy with Stillinger–Weber potentials to construct NNPs for crystalline Si
and GaN and successfully predicted their thermal properties (see section 4.2 for details) [25].

Several other sampling strategies have also been reported. An evolutionary algorithm, which avoids
human selection, was employed by Hajinazar et al to reproduce various physical quantities of metallic
systems up to ternary ones [38]. Farthest-point sampling [32] and k-means clustering methods [39] have
been used to classify datasets to maximise their diversity. Several recent works also focused on developing
active learning protocols in different ways from the one described in the previous subsection. For instance,
Smith et al adopted a training dataset selection rule using the query by committee approach for small organic
molecules [40], Podryabinkin et al reported an evolutionary-algorithm-based structural prediction [41], and
Sivaraman et al developed a minimum number of training configuration selection scheme using hierarchical
density-based spatial clustering of applications with a noise algorithm in conjunction with tuning the
hyperparameters using a Bayesian optimisation [42].

3.4. Improving training uniformity via weighting
Ideally, a training set should sample the configurational space in an unbiased manner. However, this is not
the case if the training set is obtained fromMD trajectories. For example, to train defective systems, one
constructs a training set from MD snapshots for a large supercell containing one defect. In this case, most of
the sample points correspond to the bulk region. The subsequent training procedure tends to focus on
reducing errors for over-sampled bulk configurations rather than under-sampled defect configurations,
which results in higher training errors for defect configurations than that for bulk atoms. Such sampling bias
(or imbalanced learning) is well known in ML, where the typical solution is to omit overrepresented data or
add underrepresented data (sometimes synthetic) [43]. However, this solution does not apply to materials
modelling because defective atoms must be embedded in crystalline structures and energies are trained as a
whole rather than separately for the defect and bulk.

Jeong et al addressed this problem in NNP training and suggested a method for overcoming the sampling
bias without additional sampling [44]. They first defined the G space as the space spanned by SF vectors
(note that SF vectors encode the radial and angular distribution of neighbouring atoms within a certain
cut-off radius) and then a Gaussian density function (GDF) as a summation of Gaussian functions on each
data point in the G space.

ρ(G) =
1

M

M∑
j=1

exp

(
− 1

2σ2

∣∣G−Gj

∣∣2
D

)
, (4)
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Figure 3. Schematic illustration of the training and prediction uncertainty of an NNP when the sampling density is
inhomogeneous. The training points are indicated by circles, and new configurations outside the training set are indicated by
stars. (a) Conventional training. (b) Training with GDF weighting. (Reproduced from [44] with the permission of the American
Chemical Society).

where σ is the Gaussian width, and D is the dimension of the SF vector. Because the GDF correlates with the
number density of training points in the HD space, it can be used as a weighting term to place more
emphasis on the under-sampled configurations by modifying the loss function as follows:

Γ =
1

N

N∑
i=1

(
EDFTi − ENNPi

ni

)2

+
µ

3M

M∑
j=i

Θ

[
1

ρ
(
Gj

)]∣∣∣FDFTj − FNNPj

∣∣∣2. (5)

In equation (5), the force loss function is multiplied by a scaling term because the forces can be separated
into individual atoms. The scaling functionΘmonotonically increases such that it can effectively magnify
the weights of under-represented G points (low ρ values). As a result, NNPs trained with the GDF weighting
scheme produce more even errors between the bulk and defective atoms, for instance. This uniform training
was also found to improve the accuracy in predicting defect properties such as formation and migration
energies.

Figure 3 illustrates the advantages of GDF weighting. The red line corresponds to the correct potential
energy surface, and the training points are indicated by filled circles. Because the training set is focused on a
certain point, the NNP trained by the conventional method (c-NNP) possesses a high accuracy only near the
over-represented configurations. However, the prediction uncertainty increases rapidly upon moving farther
away from the configuration of focus. On the other hand, GDF weighting can balance the prediction
uncertainty (NNP-GDF). One additional benefit of uniform training is that it increases the stability and
transferability of the NNP as it can achieve smaller prediction uncertainties for configurations extrapolated
outside the training set (stars in figure 3).

4. Application examples

4.1. Ion diffusion in amorphous systems
Clarifying the behaviour of atomic diffusion in amorphous materials is important for novel information and
energy devices. Simulating amorphous materials requires large-scale systems in order to represent
medium-range order, and thus, DFT simulations are difficult to use because of their computational cost.
Additionally, empirical potentials are often inadequate in cases where they are optimised for limited crystal
structures. Using NNPs is expected to overcome these issues with conventional simulation methods.
Therefore, simulation studies on amorphous materials are a promising frontier for the application of NNPs.
Here, we review three cases involving the simulation of atomic diffusion in amorphous hosts using NNPs.

4.1.1. Cu diffusion in Ta2O5 by a kinetic Monte Carlo approach
Li et al examined Cu atom diffusion in amorphous Ta2O5 via an NNP to understand the primary process for
operating atomic switches [33]. Atomic switches are promising non-volatile memory devices, in which the
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Figure 4. Equilibrium sites (blue spheres) and diffusion pathways (blue lines) determined for Cu atoms in the bulk amorphous
Ta2O5 structure. The polyhedrons represent Ta–O polyhedrons, while O and Ta atoms have been removed for clarity.
(Reproduced from [33] with the permission of the Physical Society of Japan).

diffusion and redox conditions of metallic ions/atoms are controlled to form a conduction path in an
amorphous layer between two electrodes [45]. The diffusion rate in the insulating amorphous layer
significantly influences the device performance, for example, the turn-on voltage, endurance, and switching
speed.

Computational simulations can give insights into the diffusion mechanisms of atomic switches to
improve the device performance. The kinetic Monte Carlo (KMC) method is a conventional approach to
simulating the diffusion rate on the nanoscale. For the KMC approach, hopping networks of diffusing
particles inside amorphous materials must be defined. However, the metastable sites of the diffusing particle,
or the nodes of hopping networks, are difficult to determine heuristically because of their low-symmetry
structures.

An exhaustive search is one manner of finding all possible metastable sites in amorphous materials. These
metastable sites are determined by structural optimisation, wherein atoms are placed at all grid points in the
amorphous structural model. Assuming that 503 grid points are generated and that the exhaustive search is
performed using DFT calculations, which cost about 1 h for optimisation, this would require a total of
14 years to finish. Therefore, using NNPs is a promising approach for reducing the cost of exhaustively
searching for metastable sites, especially for optimisation.

To achieve effective training for the ternary system of Cu/Ta2O5, a simplified NNP was constructed in the
manner explained in section 3.2.2. The structural optimisation using the NNP was 107 times faster than that
using DFT calculations, which means that the total sampling time for 2000 cases as training data was the
main concern, whereas almost all of the optimisation processing times could be neglected. Finally, 29
metastable sites were determined in the given amorphous model of Ta2O5. The NNP also accelerated the
NEB calculation to evaluate the hopping barrier between pairs of metastable sites. The determined
metastable sites and diffusion pathways in the amorphous structure are shown in figure 4. It should be noted
that the metastable sites and hopping pathways determined using the NNP are predicted and should be
confirmed by DFT simulations if possible. In this case, the prediction worked well: the estimated maximum
error along the diffusion pathway obtained by the NEB method was 0.15 eV. Finally, the diffusion network,
including all metastable sites and the diffusion barrier on each edge, was evaluated for the Ta2O5 amorphous
structure and was ready for use in a KMC simulation for Cu diffusion.

4.1.2. Amorphous Li3PO4 modelling and Li diffusion simulation by direct MD approach
Solid-state electrolytes for various electrochemical storage systems are another key application of amorphous
materials. For a conventional Li3PO4 electrolyte for Li-ion batteries and related devices, a dense Li+

concentration should be considered to simulate the diffusivity. However, this density makes it difficult to
apply a simplified NNP while focusing on a target species, assuming atoms should be dilute, as described in
the previous subsection. To overcome difficulties in constructing NNPs for multicomponent systems due to
the many SF components, Li et al demonstrated the selection of essential SFs by focusing on the structure of
Li3PO4 and heuristic sampling of training datasets (for details, see sections 3.2.2 and 3.3.1) [34].

As a result, they successfully simulated the diffusivity of Li+ with low-cost MD simulations and an NNP
for the Li3PO4 system. The computational speed of the NNP was three to four orders of magnitude higher
than that of ab initioMD. Moreover, the low cost of the MD simulation enabled generating reliable
amorphous structures, which is a fundamental obstacle in computational studies on amorphous materials.

A non-stoichiometric large-scale amorphous model of Li3PO4 was also constructed using the NNP, and
an amorphous system consistent with experimentally observed features was reproduced. Specifically, a
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Figure 5. Schematic illustration of the temperature variation during a melt-quenching simulation with an NNP. Five different
cooling rates (1011 K s−1–1015 K s−1) were used for the simulated quenching process. The longest simulation time was 10 ns.
(Reproduced from [29] with the permission of AIP Publishing).

structural P2O7
4− unit was formed, which is a dimerisation of PO4

3− formed by sharing the O atom at the
vertex.

With the NNP, MD simulations were performed on the largest amorphous structure to evaluate the
barrier for Li diffusion. The estimated barrier height was 0.55 eV, which was in good agreement with the
results obtained by the ion exchange method and impedance measurements. This indicates that the diffusion
coefficient can be accurately evaluated even for highly concentrated ion distributions in amorphous
structures by using NNPs.

4.1.3. Acceleration of melt-quenching method for modelling amorphous system
In general, amorphous models are constructed by the melt-quenching method, wherein the atomic
configuration is melted at a high temperature and then gradually cooled to room temperature in the MD
simulation. The melt-quenching method based on DFT has a high computational cost, which is often
reduced by compromising the cooling condition. However, adopting a fast cooling rate (typically 1014 K s−1)
to accelerate the quenching process can causes artifacts such as high defect concentrations in the generated
structure. Because material properties strongly depend on their atomic structures, such artifacts due to the
fast cooling rate would affect the simulated properties of amorphous materials. In fact, in experiments, the
room temperature Li diffusivity in a-Si spans four orders of magnitude between 10−14 and 10−10 cm s−1,
depending on the fabrication process. Thus, controlling the structural disorder in amorphous materials is in
high demand.

As described in previous sections, using NNPs significantly reduces the computational cost while
maintaining the accuracy. Therefore, a much slower cooling process than that in compromised DFT-based
simulations is possible, and a series of atomic structures of a-Si was generated with different degrees of
disorder by varying the cooling rates (1011 K s−1–1015 K s−1) (figure 5) [29]. To collect the training dataset
for the NNP, a scaling-up strategy and on-the-fly sampling were adopted (for details, see sections 3.3.1 and
3.3.2). The results showed that the short- and intermediate-range orders increased with the decreasing
cooling rate. The corresponding in silico model can be determined for experimental samples prepared with a
certain method and thermal history by comparing observed values, although detailed fabrication processes
are difficult to simulate directly.

The diffusion pathways of Li ions in a series of a-Si models with various degrees of structural disorder
were also calculated using an NNP [26]. In this study, diffusion pathways were determined, and KMC
simulations were performed. The activation energy of Li ions was estimated to be higher in a more disordered
local environment and vice versa, and this energy varied within the range of 1.21 eV–1.46 eV, which agreed
well with experimental measurements (1.38 eV–1.46 eV). The simulation results also showed that Li
diffusion was enhanced at higher Li concentrations, which was consistent with experimental observations.

4.2. Thermal transport
Thermal management is crucial in many information and energy devices. In particular, controlling lattice
thermal transport has become an increasingly important and sometimes central issue for further
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Figure 6. Comparison of phonon dispersions obtained from DFT calculations and the NNP for bulk (a) Si and (b) GaN.

development. Therefore, the simulation of lattice thermal transport has recently become an active area of
focus.

The current methods for simulating the lattice thermal conductivity (κ) can be classified into three
categories [46, 47]: (a) equilibrium molecular dynamics (EMD) using the Green–Kubo (GK) formula
[48–50], (b) anharmonic lattice dynamics (ALD) combined with phonon transport calculations using the
Boltzmann transport equation (BTE) and Fourier’s law [51–55], and (c) the direct evaluation of the heat flux
by the nonequilibrium molecular dynamics (NEMD) [56, 57].

Although first-principles simulations based on the above methods have recently become possible, their
computational costs are quite high, and thus their application is limited to simple systems. Therefore, several
groups have already applied NNPs to this issue. Sossao et al [58] constructed an NNP for amorphous GeTe
and investigated κ based on the EMD-GK method. The evaluated κ was close to the experimental values
measured in systems with similar compositions. Moreover, based on the Allen–Feldman theory [59], they
revealed that the main heat carriers are non-propagating vibrations called ‘diffusons’. Huang et al [60]
constructed an NNP for a-Si using a modified version of the Behler–Parrinello-type NNP called the single
atom NNP and effectively reproduced the κ obtained by DFT-EMD data. Wen and Tadmor [61] constructed
a hybrid of an NNP and Lennard–Jones-type long-range potential for multilayer graphene. The obtained
hybrid potential reproduced the κ of pristine graphene well (2531 W m−1 K−1 at 300 K). They also found
that κ was dramatically reduced by carbon vacancies in graphene: 415 W m−1 K−1 for 0.1% vacancies and
195 Wm−1 K−1 for 0.2%.

The application of NNPs for evaluating κ is not limited to combination with EMD-GK. Based on
ALD-BTE, Minamitani et al [25] investigated κ in crystalline Si and GaN by combining a HD NNP and
phonopy [62]/phono3py [51] package. The obtained RMSEs of the force predictions were 25.5 meV Å−1 for
Si and 37.8 meV Å−1 for GaN. These precisions are enough to reproduce the DFT calculation results of
phonon dispersions, as seen in the comparison of phonon dispersions (figure 6). The predicted κ also
matched the DFT calculation results, as seen in the comparison of thermal conductivities (figures 7(b) and
(c)). The dependence of the calculated κ of GaN on several computational conditions is worth noting. The
differences between NNP-GGA/DFT-GGA and NNP-LDA/DFT-LDA in figure 7 are the exchange
correlational function used in the DFT calculations and the supercell size used in the κ calculations.

In the former case, we constructed a DFT dataset for a 32-atom GaN system using GGA and trained the
NNP to predict κ in a 2× 2× 2 supercell of the primitive GaN cell (32 atoms). The methods for sampling
the atomic configuration, number of data, hyperparameters, and network topology were the same as in [25].
The predictions by the NNP matched the DFT calculation results, but both NNP/DFT calculation results
were underestimated compared with previous reports (approximately 400 W m−1 K−1 at 300 K[63]).

In the latter case, we constructed a DFT dataset for the same size system by using LDA, and we trained
the HD NNP in the same way as in the GGA case but with a slight modification of the hyperparameter η
because of the difference in lattice constants for the GGA and LDA cases. Then, we predicted κ using a
3× 3× 3 supercell (108 atoms) of the primitive cell. As shown in figure 7, the predicted κ under this
condition approaches the previously reported value and agrees with the direct DFT calculations. Notably,
even though the system size in the training dataset was smaller than the supercell size in the κ calculation, the
prediction accuracy was high. These results clearly show the extendibility and predictive power of NNPs in
third-order anharmonic potentials.

The application of NNPs for NEMD has not yet been reported because NEMD requires larger systems to
reproduce a reasonable temperature gradient than those used in EMD-GK and ALD-BTE. NEMD is a
powerful technique which can directly evaluate heat flux without any assumption of the local equilibrium. In
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Figure 7. Comparison of thermal conductivity obtained from DFT calculations and a high-dimensional (HD) NNP for bulk Si (a)
and GaN (b, c). The supercell size used for ALD-BTE by phono3py was 2× 2× 2 of the conventional cell for Si. For GaN, the
thermal conductivity was estimated with two different computational setups. For HDNNP-GGA/DFT-GGA, the GGA exchange
correlational function was used for the DFT calculations, and the supercell size used in the ALD-BTE by phono3py was 2× 2× 2
of the primitive cell. In HDNNP-LDA/DFT-LDA, LDA was used in the DFT calculations, and the supercell size for thermal
conductivity calculations was 3× 3× 3 of the primitive cell.

this regard, improving the efficiency of NNP-based MD simulations remains an important issue for the
application of NNPs to thermal transport problems.

5. Atomic energy mapping

Although there have been many methodological advances in the field of NNP development, understanding at
the fundamental level remains lacking. Due to their black-box nature, NNPs are often simply considered
interpolation models of a given structure and total energy. However, there is a distinct difference between
NNPs and typical ML models. That is, unlike other models, the target output of NNPs does not match what
they are actually trained upon: the output of an NNP is atomic energies, whereas it is trained over total
energies, which are sums of atomic energies. Therefore, the basic concept of NNPs would be justified only
when the NNP atomic energy is transferable, i.e. the atomic energy defined in one system can also describe
other systems with similar local environments. In addition, as NNPs are trained over DFT total energies, the
question of transferable atomic energies must be justified at the DFT level as well. Yoo et al [64] examined
this issue, which is summarised as follows.

In DFT, the total energy can be expressed as the integral of the local energy density. When the whole
space is partitioned into non-overlapping atomic volumes V i, an atomic energy can be assigned to each
atom, the sum of which is the same as the total energy. The transferability of the atomic energy in DFT can
be established by the nearsightedness principle of the electronic structures, which states that the charge
density of a given point is determined by the configuration of nearby atoms within a certain cut-off distance.
Additionally, in metals and insulators with finite temperatures, the density matrix decays exponentially with
distance. As a result, the DFT total energy can be seamlessly decomposed into atomic contributions which
depend only on the local environment, thereby securing the transferability [64]. (The Coulomb potential is
assumed to be effectively short-ranged or described separately [5, 65]). Therefore, the total energy of the
system can be expressed as follows:

Etot =
∑
i

Eat (Ri;Rc) , (6)

where i is the atomic index, andRi is the collection of relative position vectors of atoms lying within Rc from
the ith atom. Thus, the goal of the ML potential is to approximate the underlying atomic energy from the
given DFT total energy.

The above discussion also indicates that the ML potential is essentially a variant of the O(N) method
approximating DFT calculations, realised by transferable atomic energies as a function of local
configurations. In this respect, the ML potential is conceptually distinct from conventional classical force
fields; in classical potentials, chemical bonding is the founding concept, which has no explicit connection to
DFT. In contrast, the ML potential is based on local and transferable atomic energies grounded in the DFT
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framework, which allows for ML potentials to deal with materials with complicated bonding natures
(for instance GeTe [66] and NiSi [67]).

Atomic energy mapping is not unique because of non-unique definition of atomic volumes, which makes
it difficult to judge the validity of the mapping chosen by a certain NNP. Therefore, to investigate atomic
energy mapping with NNPs, Yoo et al utilised invariant G space points at which the DFT atomic energy is
uniquely defined. One example of invariant points is perfect crystals, in which the atomic energy of each
atom is simply the total energy divided by the number of atoms. Through several examples encompassing
crystals, surfaces, and nanoclusters, NNPs were demonstrated to correctly reproduce atomic energies at
invariant G points although they were not explicitly included in the training set. Nevertheless, the atomic
energies could deviate significantly from the reference DFT atomic energies, even when the total energy was
precisely reproduced. Such ‘ad hoc’ energy mapping can undermine the transferability of NNPs.

One example of ad hoc energy mapping occurs in the Si slab model (figure 8). When the slab structure is
divided into bulk (blue atoms) and surface (red atoms) regions, the bulk atoms should have atomic energies
close to the bulk crystalline DFT atomic energy. Figure 8(b) shows the errors in the energy mapping,
∆Ēat(bulk) and∆Ēat(surface) for NNPs trained over MD trajectories at different temperatures
(100–1000 K). At low temperatures, the mapping error is high, with underestimated average atomic energies
in the bulk and overestimated ones in the surface regions. Nevertheless, the NNP correctly predicts the total
energy because the errors cancel out. At higher temperatures, the error becomes small and comparable to the
RMSE in the total energy (3 meV/atom). This observation can be understood based on the distribution of
training points in the G space (figure 8(c)). At low temperatures, the training points corresponding to the
bulk and surface regions are well separated, whereas the training points from high-temperature MD
simulations are connected, albeit weakly. Figure 8(d) schematically illustrates this tendency. When the
training points in the G space are grouped separately, as shown by the orange line, the NNP is vulnerable to
ad hoc mapping because arbitrary offsets can still produce the same total energies. On the other hand, when
all the training points are connected to some degree, as shown by the blue line, the Eat values at intermediate
configurations help mitigate the spurious energy offset.

Multicomponent systems have an additional degree of freedom, which is the relative offset in Eat among
different chemical species. If the training set consists of only structures with a single stoichiometry, the
atomic energy mapping among chemical types can be arbitrary, leading to ad hoc mapping. For example, Lee
et al [66] reported that when MD simulations were performed on liquid GeTe using an NNP whose training
set consists of GeTe with compositions only near 1:1, phase separations were always observed. They found
that average atomic energies of Ge and Te in the liquid states differed from those of unary Ge and Te by more
than 1 eV, implying ad hoc mapping in the stoichiometric GeTe. On the other hand, when the training set
encompassed the entire compositional range, average atomic energies of Ge and Te changed smoothly along
the compositional variation, and the issue of the phase separation was resolved.

In addition to the ad hoc energy mapping, we also note that valid energy mapping is still not unique. This
means that a certain degree of randomness can be introduced to atomic energies each time an NNP is trained
on a certain training set. Such randomness could be critical when a set of NNPs are used as the uncertainty
estimator (see section 3.3.2). That is to say, if an ensemble of NNPs is trained with the same DFT total-energy
sets, each NNP can produce different atomic energies for the same structures, which may degrade the
atomic-scale resolution of the uncertainty estimation. To cope with this issue, Jeong et al proposed an NNP
uncertainty indicator based on replica NNPs [67], which are a set of NNPs with different sizes and initial
weight distributions. These NNPs are trained directly over atomic energies of the reference NNP that runs
MD simulations. As the replica ensemble is trained by the atomic energies of reference NNP, they produce
the same atomic energies for chemical environments included in the training set while the output diverges
for those outside the training set. In [67], the method was applied to the Ni–Si interfacial reaction, and the
replica ensemble could identify atomic configurations with high uncertainty at the interface region. This
information was then utilized for augmenting the training set, and the refined NNP allowed for MD
simulations up to 3.6 ns without configurations with high uncertainties.

6. Concluding remarks

In this article, we first discussed the construction and training of HD NNPs based on our experiences. We
mentioned that the complexity of the NN and the accuracy of the NNP can be controlled via the
optimisation of the hyperparameters, simplification of modelling based on physical insights, or utilisation of
data-science techniques. Furthermore, we discussed how the size of the training dataset can be reduced or
how the training uniformity can be improved to efficiently attain the desired prediction accuracy via smart
sampling techniques such as heuristic sampling of essential features, on-the-fly sampling, and weighting with
a GDF. Then, we described a few examples that demonstrate the prediction accuracy of NNPs: ion migration
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Figure 8. (a) Structure of the Si(100)− (2× 2) slab. The atoms in the bulk and surface regions are marked in blue and red,
respectively, and rc is the SF cut-off radius. (b) Average atomic energy difference between DFT and NNPs for bulk and surface
groups plotted against the temperature of the training set. (c) Scatter plot along the principal components (PCs) of G vectors in
the training set. (d) Schematic illustration of ad hoc mapping due to separate groups of training points. (Reproduced from [64]
with the permission of the American Physical Society).

in Ta2O5, Li3PO4, and a-Si; construction of a-Si models; and thermal transport in crystalline Si and GaN.
Finally, we discussed the meaning of atomic energies in NNPs and suggested the possibility of improving
their accuracy by considering the behaviour of atomic energies. These examples show that NNPs can achieve
good agreement with the first-principles calculations used for training, not only in terms of the total energy
and atomic forces but also the target physical properties and phenomena. As mentioned in the original
publications of these examples, the results confirm that, consequently, NNPs can exceed the spatial and time
scales of first-principles simulations.

As described above, NNPs are highly promising; however, they offer much room for improvement. For
sampling and training, although we have described several effective techniques, we still rely on considerable
trial and error when constructing NNPs for new systems. A deeper understanding of the effectiveness and
limitations of the suggested techniques is highly desired. In relation to this, active-learning approaches
should be further explored, including the on-the-fly sampling described in section 3.3.2 and automatic
selection of descriptors and atomic configurations for training data [32]. A more serious issue is the
construction of NNPs for systems with more than three elements because the complexity of the NNP
increases exponentially with the number of elements. Although several NNP trials have been performed on
four-element [12, 68, 69] and five-element [70] systems, to the best of our knowledge, their accuracies are
inferior to those of the NNPs constructed for systems with one to three elements. Overcoming this difficulty
will be an important future issue.

Another issue is the comparison of various ML potentials. Recently, Zuo et al [71] comparatively
evaluated the performance of NNP, Gaussian approximation potential (GAP) [6], momentum tensor
potential (MTP) [9], and linear [7] and quadratic [10] spectral neighbour analysis potentials for several
single-element systems, and their comparison demonstrates that all of them are similarly promising.
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Although this work is of significance, we would like to note that fairly comparing different potentials appears
to be highly difficult because the quality and volume of training data, tuning of hyperparameters, etc, affect
the accuracy of the potentials, and evaluating whether the compared potentials approach their performance
limits to a similar extent is challenging. There remains a room for further studies on this point, although Zuo
et al carefully designed the evaluation protocol. In relation to this, it is worth noting that mathematically, the
ultimate accuracy of GAPs and NNPs is known to be the same [72]. They also mentioned several limitations
of their study, such as the lack of evaluation for multi-element systems. Notably, MTP was recently
constructed successfully for a five-element alloy without an essential loss of accuracy [73]. Thus, a different
type of ML potential may be the most suitable depending on the purpose. Nevertheless, fairly comparing the
quality and performance of various ML potentials remains challenging.

Acknowledgments

Some of our results presented in this article were obtained in collaboration with S. Okugawa and M. Ogura.
SW acknowledges support from JST-CREST program Grant Nos. JPMJCR1523, and JSPS KAKENHI Grant
Nos. 17H05330 and 19H04536, Japan. EM acknowledges support from JST-PRESTO program Grant No.
JPMJPR17I7, Japan.

ORCID iDs

Satoshi Watanabe https://orcid.org/0000-0002-8069-6938
Wonseok Jeong https://orcid.org/0000-0001-8894-1857
Dongheon Lee https://orcid.org/0000-0001-8774-2821
Koji Shimizu https://orcid.org/0000-0001-5622-9582
Emi Mimanitani https://orcid.org/0000-0002-8003-6526
Yasunobu Ando https://orcid.org/0000-0003-3702-034X
Seungwu Han https://orcid.org/0000-0003-3958-0922

References

[1] Waser R and Aono M 2006 Nanoionics-based resistive switching memories Nat. Mater. 6 833–40
[2] Sawa A 2008 Resistive switching in transition metal oxidesMater. Today 11 28–36
[3] Ball P 2012 Computer engineering: feeling the heat Nature 492 174–6
[4] Behler J and Parrinello M 2007 Generalized neural-network representation of high-dimensional potential-energy surfaces Phys.

Rev. Lett. 98 146401
[5] Artrith N, Morawietz T and Behler J 2011 High-dimensional neural-network potentials for multicomponent systems: applications

to zinc oxide Phys. Rev. B 83 153101
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