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Abstract

Two procedures were developed to fit interatomic potentials of the embedded-
atom method (EAM) form and applied to determine a potential which describes
crystalline and liquid iron. While both procedures use perfect crystal and crystal
defect data, the first procedure also employs the first-principles forces in a model
liquid and the second procedure uses experimental liquid structure factor data.
These additional types of information were incorporated to ensure more
reasonable descriptions of atomic interactions at small separations than is
provided using standard approaches, such as fitting to the universal binding
energy relation. The new potentials (provided herein) are, on average, in better
agreement with the experimental or first-principles lattice parameter, elastic
constants, point-defect energies, bcc–fcc transformation energy, liquid density,
liquid structure factor, melting temperature and other properties than other
existing EAM iron potentials.

} 1. Introduction

Atomistic computer simulations have played an important role in the develop-
ment of our understanding of materials over the past 40 years. One key to
accurate predictions of the structure and properties of material and their defects is
the quality of the description of atomic interactions. The best existing approaches
to describing atomic interactions in condensed phases are based on quantum-
mechanical descriptions of bonding. Unfortunately, first-principles quantum-
mechanical descriptions are computationally expensive and, hence, their application
is usually limited to situations where the number of unique atoms is a few hundred
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or (much) less. In addition, first-principles molecular dynamics (MD) simulation
times rarely exceed a few picoseconds (Car and Parrinello 1988). Moreover, it
should be noted that first-principles calculations of bonding in first-row magnetic
transition metals (such as iron) are particularly difficult (and expensive). As a result,
most large-scale and long-time atomistic simulations are performed using empirical
or semiempirical descriptions of atomic interactions (Daw and Baskes 1984,
Finnis and Sinclair 1984, Mehl and Papaconstantopoulos 1996). Such descriptions
of atomistic interactions represent a compromise between computational efficacy,
generality and accuracy.

Empirical potentials are commonly determined by fitting a proposed functional
form to available data. These data may be obtained from either experimental
measurements or first-principles calculations. Commonly, the input data include
such quantities for perfect crystals as lattice parameter, cohesive energy, elastic
constants and unrelaxed vacancy formation energy. Fitting potentials to data
obtained only from perfect crystals has the disadvantage that the resultant fits can
only be expected to be accurate for highly symmetric atomic configurations and
situations in which the interatomic spacings are close to those in the equilibrium
perfect crystal. This is a potential problem for applications that focus on crystal
defects (such as interstitials, dislocations and grain boundaries), crystalline proper-
ties at high temperatures or the liquid. One approach to rectifying this deficiency is
to fit the potentials also to properties that are sensitive to a wide range of atomic
separations (especially small separations). Such properties include self-interstitial
formation energies and the liquid structure factor. For example, relaxed self-
interstitials in bcc crystals (figure 1), commonly exhibit interatomic spacings as
small as three quarters of that of the nearest-neighbour spacing in the perfect crystal
(Domain and Becquart 2001). Examination of the pair correlation function (PCF)
of liquid or amorphous materials obtained from neutron or X-ray diffraction
experiments (for example Waseda (1980)) also shows atom pairs at very small
spacings. Approaches to fitting interatomic potentials using liquid state information
have been proposed. For example, one is based upon a statistical mechanics
relationship between parameters of an interatomic potential and liquid diffraction
data (Mendelev and Srolovitz 2002) while another is based upon fits to atomic forces
(obtained from first-principles calculations) in a proposed liquid structure (Ercolessi
and Adams 1994).

In this paper, we examine several approaches to fitting interatomic potentials
including fits to perfect crystal data, interstitial data and liquid data. These potentials
are used to predict a range of material properties. The results of these calculations
are then used to evaluate the efficacy of different fitting procedures. We limit this
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Figure 1. Schematic illustrations of the h111i, h110i and h100i dumbbell interstitials in the
bcc lattice.



study to interatomic potentials of the ‘pair functional’ form (Carlsson 1990),
for example the embedded-atom method (EAM) (Daw and Baskes 1984), the
Finnis–Sinclair (1984) potentials and the effective-medium theory (Jacobsen et al.
1987) for iron. This class of potentials was chosen because it has been successfully
used to study a wide range of crystal and defect properties in metals and their alloys.
Iron was chosen as the test case because iron-based materials are ubiquitous. There
are several extant potentials of this type for iron (Johnson 1964, Pak and Doyama
1969, Osetsky et al. 1995, Ackland et al. 1997, Lee et al. 2001). However, no single
potential of this form is completely satisfactory for describing a wide range of defects
in crystals and the liquid structure. The potentials described by Johnson (1964),
Pak and Doyama (1969) and Osetsky et al. (1995) are purely pairwise and, therefore,
cannot provide an adequate description of elastic and defect properties in metals.
The EAM potential (Ackland et al. 1997) will be considered in detail in the next
section. Although the potential developed by Lee et al. (2001) explicitly incorporates
angular contributions within the modified embedded-atom method (MEAM)
formulation (Baskes 1992, Lee and Baskes 2000), it does not provide an accurate
prediction of either the melting point (2200K calculated versus 1812K measured)
or the interstitial formation energy (4.23 eV from MEAM versus 3.41 eV from the
first-principles calculations of Domain and Becquart (2001)). Therefore the necessity
to develop a new simple empirical potential for iron is clear.

} 2. Potentials fitted to perfect crystal properties alone

We begin by examining one of the widely used EAM potentials for iron that was
fitted to perfect crystal properties (Ackland et al. 1997). The total potential energy
in the EAM is divided into two contributions, namely a pairwise part and a local
density part:

U ¼
XN�1

i¼1

XN
j¼iþ1

’ðrijÞ þ
XN
i¼1

Fð�iÞ, ð1Þ

where the subscripts i and j label distinct atoms, N is the number of atoms in the
system, ri, j is the separation between atoms i and j and

�i ¼
X
j

 ðrijÞ: ð2Þ

All functions given by Ackland et al. (1997) were represented as sums of basis
functions:

’ðrÞ ¼
Xn’
k¼1

a’k’kðrÞ, ð3Þ

 ðrÞ ¼
Xn 
k¼1

a k kðrÞ, ð4Þ

�ð�Þ ¼
XnF
k¼1

aFkFkð�Þ, ð5Þ
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where �k,  k and Fk are the basis functions and ak are coefficients to be fitted to
material properties. Different basis functions (e.g. cubic splines, exponentials and
polynomials) have been used in the literature (for example Ackland et al. (1997)).
While only a single basis function (nF¼ 1 with F1ð�Þ ¼ ��1=2 and aF1 ¼ 1) was used
for the embedding energy F in the work of Ackland et al. (1997), equation (5)
provides a more general form that will be used in the present development. Note
that the Finnis–Sinclair and the EAM potentials for single-component systems
are essentially identical, with the exception of the form of the embedding energy
function employed (Finnis and Sinclair represent it as a square root and it is
represented in the EAM by a general function, to be determined). Because of this
similarity, we refer to both classes of potentials by the same term: EAM potentials.

The coefficients of this potential were chosen to fit the lattice parameter, cohesive
energy, unrelaxed vacancy formation energy and elastic constants for �-Fe at T¼ 0.
Although Ackland et al. (1997) did not have the quantitative data for the interstitial
formation energy in pure iron, they adjusted the potential to ensure that the 110h i

dumbbell was the most stable interstitial configuration, as suggested by experiment.
Several physical properties determined with this potential are given in table 1. This
potential yields good agreement with empirical universal p–V relations derived
by Rose et al. (1984) and the universal binding energy relations down to 0.85a/a0,
where a0 is the equilibrium lattice parameter in bcc iron at T¼ 0K (figure 2).

The ability of this potential to describe the system accurately at high densities
and the proper interstitial configuration suggests that this potential is suitable
for simulating atomic configurations and properties with small atomic separations.
To test this supposition, we used MD to simulate liquid iron. Unless otherwise
noted, all liquid iron simulations were performed at T¼ 1820K with 5000 atoms
in the NVT ensemble. The structure factor S(K ) obtained from these simulations
(using the PCF up to 2 nm) with this EAM potential (figure 3) shows rather poor
agreement with the experimental data from (Il’inskii et al. 2002) (note that the error
in determining the structure factor from the simulation is less than 0.1 at the position
of the first peak). Given that the first peak of the structure factor is significantly
higher than in experiment, we suspect that this EAM potential provides a liquid
structure that is more ordered than observed (Mendelev 1999). The same conclusion
can be made from figure 4, which demonstrates that the potential developed by
Ackland et al. (1997) greatly overestimates the first peak of the PCF g(r) relative
to experiment (Il’inskii et al. 2002). Nonetheless, this potential provides reasonable
values for the bcc lattice parameter, the latent heat at 1820K and the {100} surface
energies of bcc iron at T¼ 0K (see table 1).

To find the melting point corresponding to the EAM potential from the paper by
Ackland et al. (1997), we performed a series of simulations based on the so-called
coexistence approach (Morris et al. 1994, Morris and Song 2002). We begin
by performing simulations of bulk bcc iron to determine the crystalline lattice
parameter as a function of temperature. Subsequently, we set up a simulation box
initially containing 10� 10� 50 bcc unit cells with a lattice constant corresponding
to the temperature, representing our initial estimate of the melting point. Half of the
atoms are subsequently melted, leading to a periodic simulation cell containing
two solid–liquid interfaces. The velocities of the particles in this simulation cell are
subsequently reinitialized at our estimated value of the melting point, and MD
simulations are then performed employing Parinello–Rahman (1980, 1981, 1982)
dynamics with the length of the simulation cell normal to the interfaces dynamic
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Table 1. Physical properties calculated with the EAM potentials. The properties used in the fitting procedure are printed in bold.

Value for the following potentials

Property
Target
value

Johnson (1964)
potential

Ackland et al. (1997)
potential

Potential
1

Potential
2

Potential
3

Potential
4

Potential
5

a (Å), bcc at T¼ 0K 2.8553a 2.8600 2.8665 2.8553 2.8553 2.8823 2.8557 2.8553

a (Å), bcc at T¼ 1820K 2.94 2.965 2.921 2.922 2.926 –b 2.930 2.908
Ecoh (eV atom�1), bcc �4.316a �1.537 �4.316 �4.126 �4.122 �5.170 �4.155 �4.134
Ev
f (eV), bcc at T¼ 0K 1.84a 1.54 1.89 1.84 1.84 2.72 1.87 1.85

ED (eV atom�1), bcc at T¼ 0K 2.65b 2.05 2.49 2.40 2.34 2.08 2.24 2.24
Ei
f (eV), h100i bcc at T¼ 0K 4.37d 5.93 6.12 3.92 4.34 3.08 3.77 4.33

Ei
f (eV), h110i bcc at T¼ 0K 3.41d 4.64 4.88 3.46 3.53 2.40 3.20 3.50

Ei
f (eV), h111i bcc at T¼ 0K 4.11d 4.90 5.02 3.67 4.02 2.63 3.52 3.93

C11 (GPa), bcc at T¼ 0K 243.4a 192.3 243.4 243.4 243.4 143.7 243.5 243.7
C12 (GPa), bcc at T¼ 0K 145.0a 96.1 145.0 145.0 145.0 87.5 145.0 145.1

C44 (GPa), bcc at T¼ 0K 116.0a 96.1 116.0 116.0 116.0 41.3 115.8 115.9

�100 (eV Å�2), bcc at T¼ 0K 0.136e 0.079 0.113 0.105 0.110 0.183 0.125 0.140

a (Å), fcc at T¼ 0K 3.6583e 3.7005 3.6800 3.6581 3.6584 3.6454 3.6522 3.6583

�Ebcc!fcc (eV atom�1) 0.122e 0.027 0.054 0.120 0.120 0.049 0.127 0.119
�liquid (GPa), T¼ 1820K 0.00 f 5.434 �0.460 �1.173 �0.034 0.031 0.006 �0.006

PCF first peak position (Å), T¼ 1820K 2.49g 2.51 2.53 2.48 2.48 2.49 2.48 2.50

PCF first peak height, T¼ 1820K 2.28g 2.80 2.87 2.43 2.46 2.30 2.36 2.42

Dliquid (10�5 cm2 s�1), T¼ 1820K 1.61 1.19 3.34 3.62 4.66 4.37 3.60
�Hmelt (eV atom�1), T¼ 1820K 0.143 0.115 0.188 0.186h 0.162 — 0.153 0.187
RF1 (eV Å�1) 0.00 0.61 0.63 0.24 0.27 1.57 1.49 1.49
RF2 (eV Å�1) 0.00 0.69 0.66 0.25 0.28 1.15 1.08 1.06

aThese values were from Ackland et al. (1997). See Ackland et al. (1997) for the original references.
bThe crystal melts much below T¼ 1820K.
cGardner et al. (1968).
dDomain and Becquart (2001).
eFirst-principles calculations performed as part of this work.
fThe pressure was calculated at the experimental density, 0.076 atom Å�3 (Waseda 1980).
gIl’inskii et al. (2002).
hThis value is determined at the experimental density.



(to yield zero average normal stress) and the dimensions parallel to the interfaces
fixed. A refined estimate of the melting point is then derived from the average
temperature measured from such a coexistence simulation. The dimensions of the
simulation cell are then adjusted according to the lattice constant of the crystal
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Figure 2. The internal energy versus lattice parameter at T¼ 0K, where a0 is the zero-
pressure lattice parameter: (——), universal binding energy relation; (œ), data
obtained using the Ackland et al. (1997) potential; (i), data obtained using potential
2; (s), data obtained using potential 4; (�), data obtained using first-principles
calculations. Note that the fitting procedures used to obtain these potentials did not
use any atomic configurations for which the minimum interatomic separation was less
than 0.82a0.
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Figure 3. Structure factor for iron at 1820K: (——), experimental data (Il’inskii et al. 2002);
(– � –), MD simulations using the Ackland et al. (1997) potential; (- - -), MD simula-
tions using potential 1; (� � � � � �), MD simulations using potential 2.



at this new temperature, and the procedure iterated until the coexistence temperature
is derived corresponding to zero values of the stresses in the bulk crystal and
liquid phases. The final coexistence temperature is used as our prediction of the
zero-pressure melting temperature. In addition, the latent heat and the change
in volume associated with melting were determined. These results are presented in
table 2. Examination of these data demonstrates that this EAM potential (Ackland
et al. 1997) overestimates the melting point by more than 500K and yields an
unreasonably large change in volume upon melting.

One of the properties to which the potential given by Ackland et al. (1997) was
fitted is the cohesive energy. This is routinely done in order to set the energy
scale of the potential and in order to fit the universal binding energy relation
(which was necessary to provide the correct behaviour of the potential at small
atomic separations). Examination of the data presented in tables 1 and 2 and
figure 3 shows that fitting to the universal binding energy relation does not ensure
accurate prediction of properties (e.g. interstitial formation energy and latent heat)
involving small interatomic separations. For example, the formation energy of
bcc interstitials are predicted to be more than 1 eV larger than values obtained
from first-principles calculations. Also, it is important to note that the liquid PCF
obtained with the EAM potential from the work of Ackland et al. (1997) at
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Table 2. Liquid–solid transformation properties.

Tmelt

(K)
�Hmelt

(eV atom�1)
�Vmelt

(Å3 atom�1)

Experiment 1812 0.143 0.38
Ackland et al. (1997) potential 2358 0.218 0.81
Potential 2 1772 0.162 0.62
Potential 4 1753 0.157 0.59

r (nm)

g

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

1
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3

Figure 4. Pair correlation function for iron at 1820K: (——), experimental data (Il’inskii
et al. 2002); (– � –), MD simulations using the Ackland et al. (1997) potential; and 4
(dotted line).



T¼ 1820K shows atoms as close together as 0.2 nm (0.85a0), approximately the
same minimum separation as found in the interstitial dumbbells. While the EAM
potential is shown in figure 2 to produce accurate energy–volume relations for
the bcc structure down to these small interatomic separations, it leads to large
discrepancies with experiment in the prediction of the liquid PCF (figure 4).
In particular, the first peak height is overestimated by this potential. This result
and the overestimation of interstitial formation energies indicate that the inter-
atomic interactions predicted by the EAM potential given by Ackland et al. (1997)
are too repulsive at small separations. On this basis we conclude that fitting to the
universal binding energy relation, and thus the cohesive energy, does not ensure an
accurate description of interatomic forces over a wide range of coordination and
bond length.

Table 1 also exhibits the same set of material properties obtained with a classical
pair potential for iron, that is the well-known Johnson (1964) potential. It is
interesting to note that this pair potential gives reasonable values for most
properties, but (as pair potentials must) yields C12¼C44 and the unrelaxed vacancy
formation energy is equal to the cohesive energy.

} 3. Potentials fitted to first-principles forces

In the previous section, we demonstrated that fitting EAM-type potentials solely
to perfect crystal properties is insufficient to reproduce properly such important
properties as the liquid structure factor and the interstitial formation energy.
In this section, we expand the set of properties included in the fit to include atomic
forces, obtained from first-principles calculations, as originally was proposed by
Ercolessi and Adams (1994). We use the following approach: we generate a crude
atomic model for a liquid of the correct density, perform a first-principles calculation
of the forces on all atoms within this model and use these to fit potential parameters.
The procedure ensures consideration of a range of atomic geometries, including
cases of small atomic separations in asymmetric configurations.

In the present work we created the initial liquid model by running a MD simula-
tion using a very simple pair potential taken from the work of Pak and Doyama
(1969) at T¼ 1820K and the experimental density, 0.076 atom Å�3 (Waseda 1980).
Although the resultant liquid structure may be far from the experimental structure,
it does provide the requisite range of atomic configurations in a liquid-like structure
of the correct density. The first-principles computations were performed using
the pwscf code (Baroni et al. 2003). An ultrasoft pseudopotential (Vanderbilt
1990) was employed to describe electron–ion interactions while the electron–electron
interactions are described in the generalized gradient approximation (Perdew et al.
1996). A plane-wave basis set with an energy cut-off of 30Ry was employed. We
included spin polarization to address the correlation of the local moment of
iron atoms. The temperature effect was considered through the finite-temperature
formulation of Kohn–Sham theory (Mermin 1965) where electron occupations are
determined from the Fermi–Dirac formula with a temperature of 1850K. Since the
first-principles calculations require substantial computational time, the liquid models
were limited to only 100 atoms. According to the first-principles calculation, the
maximum and average total forces acting on an atom are 3.85 and 1.03 eV Å�1

respectively.
The three components of the force vectors on each of the N atoms obtained from

the first-principles calculations provide 3N additional equations that can be used to
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fit the coefficients in front of the basis functions (i.e. a’k, a
 
k and a

F
k ) in the various

terms of the potential:

Fix a’k, a
 
k , a

F
k

� �
¼ F fp

ix ,

Fiy a’k, a
 
k , a

F
k

� �
¼ F fp

iy ,

Fiz a’k, a
 
k , a

F
k

� �
¼ F fp

iz ,

ð6Þ

where the forces on atom i on the left-hand side are calculated using equations
(1)–(5) and those on the right-hand side are obtained from the first-principles
calculations. The coefficients in the potential are determined by minimizing the
deviations between the first-principles and potential forces together with those of
any other physical property that is available, that is

R2
¼ R2

F þ
XA
�¼1

l� P� � Po
�ð Þ

2,

where P� and Po
� label each of the A properties included in the fitting procedure as

determined using the potential and some other trusted means (i.e. experiment or
first-principles) respectively, and RF is the deviation between the first-principles
forces and those obtained from the potential:

R2
F ¼

1

3N

XN
i¼1

Fix � F fp
ix

� �2
þ Fiy � F fp

iy

� �2
þ Fiz � F fp

iz

� �2� �
: ð7Þ

The fitting is done in the following manner. Firstly, we make use of the fact that
all properties are linear functions of the coefficients in front of the basis functions in
the pairwise fa’kg and embedding faFk g energy terms of the EAM potential. Therefore,
we start with an initial guess for the coefficients in front of the basis functions of
the density function fa k g and determine fa’kg and faFk g using a least-squares fit. Next,
we use a gradient search method to obtain the new fa k g and iterate to convergence.
At this stage, we fit to the following properties:

(i) first-principles forces;
(ii) lattice parameters of bcc and fcc iron at T¼ 0K;
(iii) bcc cohesive energy;
(iv) unrelaxed bcc vacancy formation energy;
(v) energy difference between bcc and fcc crystals.

All target values for these properties are shown in table 1. The next stage of
the fitting procedure is to fix the coefficients fa k g at the values obtained from the
minimization described above and further to refine the coefficients fa’kg and faFk g
by fitting to additional sets of properties, as described below. In this refinement
stage, we no longer force the potential to match the cohesive energy for the reasons
outlined in the previous section.

In the first refinement case, which we refer to as EAM potential 1, the pairwise
and embedding energy functions were fitted to the three elastic constants of bcc iron,
in addition to the standard set of properties:

(i) first-principles forces;
(ii) lattice parameters of bcc and fcc iron at T¼ 0K;
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(iii) unrelaxed bcc vacancy formation energy;
(iv) energy difference between bcc and fcc crystals.

The main difference between this potential and that derived by Ackland et al.
(1997) is that in the present case we also fit to the first-principles forces in a
liquid-like structure. Both the fitted properties and a series of properties, which
were not used in the fitting procedure are shown in table 1. These data demonstrate
that potential 1 yields a more accurate prediction of the interstitial formation energy
(in comparison with a first-principles calculation (Domain and Becquart 2001)) than
does the original potential (Ackland et al. 1997) (even though this was not in the fit).
This improvement can be attributed to the fact that the new potential was fitted
to first-principles forces in a liquid-like configuration and that both interstitials
and liquids contain smaller atomic separations than occur in a perfect bcc iron
crystal. Note that the liquid structure employed in the fitting procedure was not
the real iron liquid structure, but rather a very crude approximation. In order to
test the sensitivity of the new potential to the detailed liquid structure, we created a
liquid model using the new potential 1. The structure factor of the resultant liquid
is shown in figure 3. Clearly, this structure factor is in much better agreement with
the experimental data than that obtained with the Ackland et al. (1997) potential.
Note (see table 1) that the pressure in this liquid model is not zero (this corresponds
to a liquid density 1.6% larger than in experiment). Although the cohesive energy
was excluded from the second stage of the fitting procedure, potential 1 still provides
a reasonable value of the cohesive energy at T¼ 0K (only a 5% deviation from the
target value). Furthermore, it gives approximately the same latent heat and the f100g
bcc surface energy as the Ackland et al. (1997) potential, which was forced to match
exactly the cohesive energy (see table 1). These results suggest that there is no need
to fit the cohesive energy in order to obtain crystal and crystal defect properties.

Although potential 1 yields reasonable values for the interstitial formation
energy, the deviation with respect to the first-principles results is too large for
some applications (e.g. radiation damage simulations). The liquid density predicted
using potential 1, while reasonable, differs from the experimental value by more
than the uncertainty in the experimental measurement. In order to address these
deficiencies, we expand our fit to include the interstitial formation energies and the
liquid density, yielding potential 2. The complete description of this potential can be
found in appendix A. It is interesting that the addition of the interstitial formation
energies and liquid density to the fitting procedure yielded some improvement in
the agreement with the experimental structure factor (see figure 3). The properties
associated with this new potential are compared with the target properties in table 1.
In addition, table 2 shows the melting point, latent heat and change in volume upon
melting obtained with this potential and from experiment. These results show that
the predicted melting point differs from the experimental value by only 40K.
Since the melting point was not used in the fitting procedure, such agreement can
be considered as satisfactory. While the new potential 2 yields melting properties that
are in much better agreement with the experimental measurements than does the
Ackland et al. (1997) potential, the agreement is still not ideal (recall, however, that
none of these properties was included in the fit).

Both potential 1 and potential 2 were fitted to the first-principles total forces
calculated over the same ‘liquid’ atomic configuration. Examination of the value of
RF1 in table 1 shows that we were able to fit the first-principles forces to within only
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approximately 25% in the two cases. Note, however, that this is a vast improvement
over the predictions obtained using the earlier EAM potential (see table 1). The total
forces to which we fit were obtained for a single small liquid-like model. It is of
interest to inquire how well we can reproduce the forces for another liquid-like
structure. As an example, such a structure was created to be consistent with the
experimental liquid iron diffraction data using the method described by Mendelev
(1999). The first-principles forces obtained for this model showed maximum and
average values of 4.38 and 0.98 eV Å�1 respectively. A comparison of the rms
deviation of these forces RF2 from those obtained using the different potentials, is
shown in table 1. Examination of these data shows that an EAM potential fitted
to the first-principles forces from one particular liquid configuration provide
approximately the same level of agreement with the first-principles forces from
another liquid configuration.

In the EAM formalism, a positive second derivative of the embedding function
ðF00

ð�Þ > 0Þ ensures that the potentials give rise to increases in bond strength result-
ing from a reduction in coordination (Carlsson 1990). As reviewed by Carlsson
(1990), this effect is known to underlie a number of important features of defect
properties in metals. It is thus important to point out that in this work we used the
following form of the embedding function: Fð�Þ ¼ ��1=2 þ aF�2 (see appendix A)
and obtained a negative value of aF. Since F00

ð�Þ must be positive, it is clear that
the resultant potential becomes unphysical when � > �c ¼ ½�1=ð8aFÞ�2=3 � 50. In all
the atomic configurations we examined in our fitting procedure, the value of �
is much smaller than this critical value. For example, in perfect bcc iron with the
equilibrium lattice parameter, �¼ 26.3. In the case of a h100i interstitial in bcc iron,
the maximum value of � was found to be �max¼ 30.7. Finally, the maximum value of
� in a liquid model was �max� 30 at T¼ 1820K and �max¼ 33 at T¼ 2200K.
Clearly, our fitting procedure cannot be expected to provide the correct behaviour
of the embedding energy functions for values of � larger than those involved in the
fitting (i.e. �>33 in the present case).

Note that, in all cases in our models where small atomic separations were
observed, no atom had more than three neighbours that were located at very
small distances (much smaller than in the equilibrium crystal). Hence, under normal
circumstances the values of � that are likely to be encountered do not differ too much
from those in the equilibrium crystal. On the other hand, if we consider a perfect
crystal, hydrostatically compressed to the same minimum distances seen in the liquid
or defected crystal, the situation would be quite different. In this case, all the nearest-
neighbour distances are simultaneously very small and, correspondingly, � is very
large. For example, if a crystal was compressed such that its lattice parameter
was 95% of that in the zero-pressure crystal (a/a0¼ 0.95), �¼ 33.5 for potential 2.
This is equivalent to the maximum value of � found in a liquid at T¼ 2200K using
the same potential. It is interesting, that potential 2 provides good agreement
with up to a/a0¼ 0.95. While the agreement between potential 2 and the universal
binding energy relation predictions is poor for a/a0<0.95, first-principles and
universal binding energy relation predictions are in good agreement down to very
small values of a/a0. The disagreement between potential 2 and the universal binding
energy relation predictions observed for a/a0<0.95 can be explained by the fact
that the uniform deformation assumed in the universal binding energy relation
at these lattice parameters gives � values much larger than in any of our models.
This demonstrates why fitting the potential at small atomic separations to the
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universal binding energy relation does not yield better predictions of the liquid
structure or the interstitial formation energies. Conversely, potential 2 should not
be applied in cases of very large homogeneous deformations (see figure 2).

Just as potential 2 is not expected to be useful at very large � (e.g. greater
than 33), we should also expect that the potential is not useful when � is much
smaller than those sampled in the configurations to which this potential was fitted.
The smallest value of � found in the liquid model at T¼ 1820K is �min¼ 14. This
is the limit below which the potential cannot be expected to provide reliable
information. Indeed, examination of table 1 shows that the h100i surface energy
of bcc iron, where �min¼ 15, calculated with potential 2 is 20% smaller than that
obtained from first-principles calculations.

Ev
f in table 1 is the unrelaxed vacancy formation energy, that is the difference

between the energy of a perfect crystal with one atom removed (and all other atomic
positions fixed) and N"0, where N is the number of atoms in the crystal with a
vacancy and "0 is the energy per atom in the perfect crystal. While it is convenient
to use this value in the fitting procedure, it clearly must differ from the experimental
vacancy formation energy (where the atom positions are relaxed). Therefore,
the target vacancy formation energy in table 1 was obtained using first-principles
calculations of an unrelaxed crystal with a single vacancy. The relaxed vacancy
formation energy can be obtained by minimizing the total energy of the system
with a vacancy with respect to the atomic coordinates.

Experimental data are available for the activation energy ED for self-diffusion,
which is the sum of the relaxed vacancy formation energy and the vacancy migration
energy (Shewmon 1963). To find the migration energy, we examine the energy of a
crystal with a single vacancy as we translate an atom (one of the atoms that is a
nearest neighbour of the vacancy) in a straight line drawn from its original relaxed
position to its relaxed position after it exchanged with the vacancy. The energy
versus distance is shown in figure 5; the minimum of this plot is the relaxed vacancy
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formation energy and the difference between this and the activation for diffusion
is the maximum of this plot (the migration energy is simply the difference between
these two). The maximum or activation barrier does not occur at the midpoint but
is rather slightly displaced from the midpoint in either direction. Such a double-
humped energy landscape is also observed in calculations with the EAM potential
(Ackland et al. 1997). The activation energy for diffusion is quoted in table 1.
Potential 2 and the Ackland et al. potential (1997) give approximately the same
value, which is within approximately 10% of the experimental measurement.

} 4. Potentials fitted to the liquid structure factor

Another approach to the incorporation of small atomic separation information
into the fitting procedure is through the direct use of experimental liquid structure
data. The structure factor for liquid iron near the melting point was obtained by
Il’inskii et al. (2002). The Fourier transformation of the structure factor leads to
the PCF, which we use here. A more complete description of the procedure of
fitting potentials to PCF data has been given by Mendelev and Srolovitz (2002).
In this procedure, we employ the function  (r) obtained as described in the previous
section (fit only to lattice parameters, cohesive energy, unrelaxed vacancy formation
energy and the relative bcc and fcc energies) and only refitted the pairwise energy
function ’ and embedding energy function F. Firstly, we fitted potential 3 to only the
PCF and the liquid density. Figure 6 demonstrates that the fitting procedure
provides excellent agreement between the model and experimental structure factor.
To refine this potential further, we added the bcc and fcc lattice parameters, the bcc
unrelaxed vacancy formation energy and the bcc!fcc transition energy, and all
three elastic constants of the bcc iron to the fitting procedure to generate potential 4
(see appendix A for a complete description of this potential). The addition of
the perfect crystal properties at T¼ 0K led to a slight worsening of the agreement
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with the experimental structure factor (see figure 7). Tables 1 and 2 demonstrate
that inclusion of the liquid structure factor information in potential 4 provides more
accurate values of the surface energy in bcc iron at T¼ 0K, latent heat of melting
and volume change than does potential 2, although slightly worse values for the
melting temperature and the activation energy for self-diffusion in bcc iron.
However, all these differences are rather small and we can conclude that both fitting
procedures used to generate the potentials lead to nearly the same properties.
Examination of figure 8 shows that both procedures produce nearly the same
potential. This suggests that improving the short-range behaviour of the potentials
using first-principles forces in a liquid-like structure and directly including the
experimental liquid diffraction data are nearly equivalent.

Table 1 shows that potential 4 does not yield accurate interstitial formation
energies. The interstitial formation energies are extremely sensitive to small changes
in the interatomic potential. This may be traced to the relatively small interatomic
separation in bcc interstitials, which in turn gives rise to large (and highly anisotropic)
and long-range elastic relaxations. Given the nature of these relaxations, errors of
order 0.5 eV in the interstitial formation energy are not surprising. To address the
interstitial formation energy errors resulting from potential 4, we have refitted this
potential to include also the interstitial formation energy: potential 5. This led to a
small decrease in the agreement with the experimental structure factor (see figure 7)
but, on the other hand, greatly improved the agreement with the first-principles
interstitial formation energy.

It is notable, but not surprising, that the potentials fitted to liquid structure
factor data yield worse agreement with the first-principles forces for the liquid-like
structure, as seen in table 1. In fact, the values of RF for potentials 4 and 5 are even
larger than the mean forces on the atoms in the system. It is not clear how this will
affect the dynamic behaviour of this material. Table 1 shows that the effect of these
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errors is minimal on the kinetic parameters that we examined in the present work
(i.e. the activation energy for self-diffusion in bcc iron and the diffusivity in the liquid
state); cf. the same parameters obtained using potential 2 for which RF is small.

} 5. Discussion and conclusions

Two procedures were developed to fit the EAM potentials in the present work.
While both procedures use the perfect crystal data and crystal defect information,
the first procedure also uses first-principles forces to obtain the proper pairwise
part behaviour at small atomic separations and the second procedure uses experi-
mental diffraction data for the same purposes. The advantage of the first procedure
is related to the fact that the diffraction data are not always available. In addition,
while the accuracy of the first-principles calculation certainly will improve with
increases in computer power and further advances in first-principles calculations,
there is no reason to expect concomitantly large improvements in the accuracy of the
diffraction data. The reliability of the diffraction data for our application is further
compromised by the fact that we actually use pair correlation function data rather
than the structure factor and the structure factor is only measured over a finite range
(the Fourier transformation formally requires knowledge of S(K ) from 0 to 1).
The advantage of the second (diffraction data) procedure is that it yields potentials
for which the MD simulation data are in good agreement with the experimental
diffraction data. In the case of pure iron, the agreement between S(K) predicted
using the potential obtained using the first procedure and the experimental data is
only slightly worse than when the second procedure is employed. There is, however,
no guarantee that the first procedure will work so well for other systems. For exam-
ple, the procedure used to fit an EAM potential for pure aluminium used by
Ercolessi and Adams (1994) is very similar to our first procedure but yields relatively
poor agreement between predicted and measured structure factors (J. R. Morris
2003, private communication). This is despite the fact that this potential (Ercolessi
and Adams 1994) provides excellent agreement with the melting point and latent
heat. Clearly, the failure to predict properly the liquid structure can be of great
consequence when such a potential is used for simulating solid–liquid interface
properties. It is important to note that the good reproduction of the liquid structure
usually provides a correct value of diffusivity (for example Mendelev (1998a,b)).
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Examination of table 1 shows that all potentials developed in this work (even
potential 3 which provides poor agreement with the target values for most proper-
ties) give about the same diffusivity, while for example the Johnson (1964)
and Ackland et al. (1997) potentials, which lead to a much higher first peak in the
PCF, also yield diffusivities that are much too small. Since potential 2 provides
reasonable agreement with both the experimental diffraction data and the first-
principles forces, we recommend using this potential in simulations of defects
in bcc iron and for the solid–liquid interface properties. The parameters of this
potential are given in appendix A.

An alternative to trying to incorporate the effects of small atomic separations
through liquid diffraction or force data is to fit the potential using the universal
binding energy relation. For example, the pairwise term in the potential described
by Lee et al. (2001) is determined from the difference between the energy predicted
by this universal relation and the embedding term. Our results and those of Lee et al.
(2001) show that this method does not produce reasonable liquid structures
nor interstitial formation energies. The point is that small atomic separations are
incorporated into the universal binding energy relation by assuming uniform
compression (i.e. larger values of �), while the small atomic separations found in
liquid structures and in interstitials occur with very little change in �.

Examination of table 2 demonstrates that incorporating situations where small
atomic separations occur into the fitting procedure leads to marked improvements
in the melting point and latent heat and to small improvements in the change in
density upon melting. Note that none of these properties was used in the fitting
procedures. However, if desired, they could be incorporated. The technique for
fitting �Hmelt and �Vmelt is straightforward and an approach to fitting the melting
point was proposed by Sturgeon and Laird (2000).
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APPENDIX A

}A1. Embedded-atom method potential forms

Here, we provide a more complete description of the functional forms of the
potentials developed in this paper. Recall that the general forms of the potentials
are given by equations (1)–(5). The pairwise term takes the following form:

’ðrÞ ¼

Z2q2e
r
�

r

rs

� �
for r < r1,

expðB0þB1rþB2r
2
þB3r

3
Þ for r1 < r < r2

Pn’
k¼1

a’kðr
’
k � rÞ3�ðr’k � rÞ for r > r2,

8>>>>>><
>>>>>>:

, ðA1Þ
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where Z is the atomic number, qe is the charge on an electron, �(x) is the Heaviside
step function,

rs ¼ 0:885 34
rB

21=2Z1=3
, ðA2Þ

�ðxÞ ¼ 0:1818 expð�3:2xÞ
þ 0:5099 expð�0:9423xÞ

þ 0:2802 expð�0:4029xÞ

þ 0:028 17 expð�0:2016xÞ
ðA3Þ

and rB is the Bohr radius. A detailed explanation of the functional form used in
equation (A1) can be found in the papers by Ackland et al. (1997) and Biersack
and Ziegler (1982). The density function is written as a cubic spline:

 ðrÞ ¼
Xn 
k¼1

a k ðr
 
k � rÞ3�ðr k � rÞ ðA4Þ

and the embedding energy as

Fð�Þ ¼ ��1=2 þ aF�2: ðA5Þ

The coefficients for potentials 2 and 4 can be found in table A 1.
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Table A 1. The parameters describing potentials 2 and 4 where all distances are expressed in
Å and energies in eV.

Parameter

Value for the following potentials

Potential 2 Potential 4

r1 1.00 0.90

r2 2.00 1.95

B0 6.426 526 057 634 8 14.996 917 289 290

B1 1.790 048 852 428 6 �20.533 174 190 155

B2 �4.510 831 672 980 7 14.002 591 780 752

B3 1.086 619 937 330 6 �3.647 373 659 114 3

a’1 ðr’1Þ — 195.923 228 539 94 (2.1)

a’2 ðr’2Þ �24.028 204 854 115 (2.2) 17.516 698 453 315 (2.2)

a’3 ðr’3Þ 11.300 691 696 477 (2.3) 1.492 652 516 429 0 (2.3)

a’4 ðr’4Þ 5.314 449 582 046 2 (2.4) 6.412 947 612 519 7 (2.4)

a
’
5 ðr

’
5Þ �4.665 953 285 604 9 (2.5) �6.815 746 186 055 3 (2.5)

a
’
6 ðr

’
6Þ 5.963 775 852 919 4 (2.6) 9.658 258 196 360 0 (2.6)

a
’
7 ðr

’
7Þ 1.771 026 200 606 1 (2.7) �5.341 900 276 441 9 (2.7)

a’8 ðr’8Þ 0.859 138 307 687 31 (2.8) 1.799 655 804 834 6 (2.8)

a’9 ðr’9Þ �2.184 536 296 826 1 (3.0) �1.478 896 663 628 8 (3.0)

a’10 ðr’10Þ 2.642 437 700 746 6 (3.3) 1.853 043 528 366 5 (3.3)

a’11 ðr’11Þ �1.035 834 537 020 8 (3.7) �0.641 643 448 593 16 (3.7)

a’12 ðr’12Þ 0.335 482 649 515 82 (4.2) 0.244 636 300 251 68 (4.2)

a
’
13 ðr

’
13Þ �0.046 448 582 149 334 (4.7) �0.057 721 650 527 383 (4.7)

a
’
14 ðr

’
14Þ �0.007 029 496 304 868 9 (5.3) 0.023 358 616 514 826 (5.3)

a
’
15 ðr

’
15Þ — �0.009 .706 492 126 507 9 (6.0)

a 1 ðr 1 Þ 11.686 859 407 970 (2.4) 11.686 859 407 970 (2.4)

a 2 ðr 2 Þ �0.014 710 740 098 830 (3.2) �0.014 710 740 098 830 (3.2)

a 3 ðr 3 Þ 0.471 935 270 759 43 (4.2) 0.471 935 270 759 43 (4.2)

aF �0.000 353 870 965 799 29 �0.000 349 061 783 635 30
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