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1. Details on the training data 

 

The training data consist of various configurations as compiled in Table S1 with the number 

of training points and the sampling interval. In detail, the label ‘Crystal’ includes the hexagonal 

and fcc phases with strain, point defects such as self-interstitial, self-substitutional, and vacancy, 

or local vibrations at 700 K. In the case of the strained crystal, hydrostatic, volume-conserved 

uniaxial, and shear strain are considered, of which maximum strain of 5 % is applied to each axis. 

The label ‘Liquid’ and ‘Quenching’ indicate MD trajectories at 1000 K and quenched down to 300 

K with a cooling rate of −15 K/ps, respectively. The melt-quench protocol is identical as described 

in Ref. [1]. The amorphous structure is obtained from the melt-quench method and its annealing 

MD at 500 K is labeled as ‘Amorphous.’ Heating of fcc GeTe is carried out at 1000 K for 5 ps, 

iterated until complete melting with an incremental temperature of 100 K. Transition from solid to 

liquid occurs at 1500 K, and the trajectories near the transition temperature is collected and labeled 

as ‘Melting.’ The shortest sampling interval of 20 fs is used at the moment of phase transition, 

compensating lack of the data stemming from its transient nature. ‘Liquid (Ge or Te)’ indicates the 

unary liquid phases at 1000 K, and interfaces are made between them to mix at 1500 K, labeled as 

‘Mixing liquid.’ The label “Ring relaxation” consists of the DFT-relaxed trajectories of the 

amorphous structures obtained by c-NNP. The next subsections provide additional explanations 

for constructing the training set.



Table S1. Detailed information of the training data. In the amorphous, mixing liquid, melting, ring relaxation, multiple trajectories are 

used for sampling (2, 2, 2, and 5, respectively.) The temperatures for MD simulations are shown in parentheses. 

 



1.1 Melting of fcc crystal 

 

 

Fig. S1. (a) Evolution in time of energies calculated by DFT and m-NNP. The constant energy shift 

(∆) of ~25 meV/atom is observed, but the relative potential energy surfaces are close to each other. 

The amorphous structure is not fully crystallized after 800 ps due to orientational mismatch. (b) 

The distribution of atomic force components in one direction. (c) Histogram of the magnitude of 

atomic force difference between DFT and m-NNP. 

 

One might doubt that NNP has the ability to run crystallization simulation since the 

crystallization trajectory is not explicitly included in the training data. We found that the melting 

of fcc crystal data are the learnable points of crystallization data [2], as validations are followed 

about crystallization simulations: Using m-NNP, the 96-atom amorphous structures are generated 



by the melt-quench method and crystallization simulations are performed at 600 K for 2 ns. Fig. 

S1(a) compares the potential energy surface along the crystallization process, and (b) and (c) show 

the force errors between DFT and NNP. Although RMSE for energy is 25 meV/atom, the relative 

potential energy surface is close to DFT. In addition, RMSE for force is 0.27 eV/Å, similar to that 

of amorphous structures in the validation set. Overall, the crystallization process simulated by m-

NNP is in good agreement with DFT. 

 

1.3 Mixing of unary Ge and Te liquid 

 

 

Fig. S2. (a) Ge-Te interface modeling comprised of the two unaries liquid slabs. (b) Principal 

component analysis (PCA) for the training data. 

 



We found that liquid simulations of GeTe at 1000 K often induce phase separation into 

unary Ge and Te when the training set consists of only 1:1 composition. It is due to ad hoc energy 

mapping in the multi-component system [2], which results in the instability of NNP. To overcome 

this problem, data points should be close enough to each other. Therefore, we generate an interface 

model between unary liquid slabs as presented in Fig. S2(a), and heating at 1500 K until they mix 

to be liquid GeTe. In order to examine the distribution of training points in reduced dimensions, 

we carry out the principal component analysis (PCA). Figure S2(b) shows a distribution of the 

training set along directions of large variance by projecting data on the first (PC1) and second 

principal components (PC2), with distinct color for each subset. (The number is assigned by the 

descending order in variances.) It is seen that unary (purple) and binary (green) liquid data are 

connected via the mixing data (red). The data connection contributes to reliable atomic energy 

mapping, which increases the stability of NNP and prevents unphysical phase separations. 

 

2. Learning curves 

 

We take a two-step scheme to train NNP by manipulating energy and force coefficient of 

the loss function and learning rates with the definition in Ref. [3]. The energy coefficient is equal 

to 1.0 in both steps, while the force coefficient is set to be 1.0 in the first step and zero in the second 

step. We use learning rates of 10-2 and 10-5 for force and energy training, respectively. The Adam 

optimizer is used for both training steps with a batch size of 20. Figure S3 provides evolution of 

RMSE of energy and force as training proceeds. As a result, total force and energy RMSE is under 

0.3 eV/Å and 5 meV/atom for both c-NNP and m-NNP, respectively. 

 



 

Fig. S3. Learning curves of (a) force training and (b) energy training. The solid lines and dashed 

lines indicate the RMSEs of the validation and training data, respectively. 

 

We performed tests to determine the L2 regularization coefficient. As shown in Fig. S4, it 

appears that regularization effects are negligible on the overall learning curves since RMSEs for 

energy are below 10 meV/atom and differences between training (solid lines) and validation 

(dotted lines) errors are very small. However, large coefficients over 10-6 lead to under-training 

for the ring relaxation. That is to say, NNP prefers planar fourfold rings even after training the ring 

relaxation data. Although the L2 regularization coefficients below 10-8 lead to similar validation 

errors and energy correlation between DFT and NNP, we used L2 regularization coefficient of 10-

8 to prevent unexpected overfitting.  

 

 

Fig. S4. With different regularization coefficients, (a) learning curves of RMSE for energy and (b) 

energy correlations between DFT and NNP after training of 300 epochs. The solid lines and dashed 

lines indicate the RMSEs of the training and validation data, respectively. 



 

To examine variations in RMSE with respect to different initial weight distributions, we 

train two additional c-NNPs independently with the same training data (c-NNP2 and c-NNP3) The 

validation errors of energy are summarized in the Table S2. Discrepancies of a few meV/atom 

among subsets are often observed. The “amorphous” subset in c-NNP has the largest validation 

error, while the “quenching” has the largest one in c-NNP3. This reflects a stochastic nature of 

training errors and such fluctuations of validation errors among c-NNPs may result from initial 

weights of neural networks and choice of validation set. To add, when we increase the amorphous 

subset to encompass 120,000 data points, the validation error is still 4.55 meV/atom, which is 

similar to the values in Table S2. This may reflect that sufficient data points are provided in 

learning the amorphous state.



Table S2. Consistency of validation RMSEs of NNP training. 

 

 



3. Structural properties of c-NNP 

 

RDF and ADF of the liquid and amorphous structure are summarized in Fig. S5, including 

our work of DFT and c-NNP as well as previous NNP-based simulations [4]. It is noteworthy that 

density and the liquid temperature are slightly different between Ref. [4] and our work, where they 

are 31.6 atoms/nm3 and 1150 K respectively while we use 34.6 atoms/nm3 and 1000 K. Total RDF 

of liquid and amorphous structures is in good agreements among them. 

 

 

Fig. S5. (a) Total and partial RDF of liquid GeTe. (b) Total ADF of liquid GeTe. (c) Total and 

partial RDF of amorphous GeTe. (d) Total ADF of amorphous GeTe. The temperature of liquid 

and amorphous is 1000 K and 300 K respectively in our simulation and 1150 K and 300 K in the 

previous study ‘NNP2012’ [4]. The data is reconstructed from the reference, with renormalization 

of ADF. 

 

4. Planarity of fourfold rings at the simulation conditions 

 

We found that the incubation time is increased by reducing the number of the planar 



fourfold rings in the amorphous state. Since the structural analysis was performed at 300 K (under 

glass transition temperature), the same analysis is performed at 500 K (above the glass transition 

temperature) and the results are shown in Fig. S6. The planar fourfold rings are more favorable in 

c-NNP than m-NNP in both densities and is more at the higher density (𝜌crystal) than the lower 

density (𝜌device). The structural features at 500K are consistent with those at 300K. 

 

 

Fig. S6. Planarity of fourfold rings in a-GeTe at 500 K by DFT, m-NNP and c-NNP obtained by 

the same method as in Fig. 2(a) at (a) the device-condition and (b) crystalline density. 
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