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Accelerated identification of equilibrium structures of
multicomponent inorganic crystals using machine learning
potentials
Sungwoo Kang 1,2, Wonseok Jeong1,2, Changho Hong 1, Seungwoo Hwang1, Youngchae Yoon1 and Seungwu Han 1✉

The discovery of multicomponent inorganic compounds can provide direct solutions to scientific and engineering challenges, yet
the vast uncharted material space dwarfs synthesis throughput. While the crystal structure prediction (CSP) may mitigate this
frustration, the exponential complexity of CSP and expensive density functional theory (DFT) calculations prohibit material
exploration at scale. Herein, we introduce SPINNER, a structure-prediction framework based on random and evolutionary searches.
Harnessing speed and accuracy of neural network potentials (NNPs), the program navigates configurational spaces 102–103 times
faster than DFT-based methods. Furthermore, SPINNER incorporates algorithms tuned for NNPs, achieving performances exceeding
conventional algorithms. In blind tests on 60 ternary compositions, SPINNER identifies experimental (or theoretically more stable)
phases for ~80% of materials. When benchmarked against data-mining or DFT-based evolutionary predictions, SPINNER identifies
more stable phases in many cases. By developing a reliable and fast structure-prediction framework, this work paves the way to
large-scale, open exploration of undiscovered inorganic crystals.
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INTRODUCTION
Human history has evolved together with material innovation:
steel production from heating iron with carbon triggered a shift
from the Bronze to Iron age, and the growth of high-purity Si
crystal ingots led to the burgeoning of the computer age. In
modern times, synthetic multicomponent materials are constantly
developed to meet the demands of diverse applications. The
Inorganic Crystal Structure Database (ICSD), including most of the
experimentally synthesized inorganic compounds, has approxi-
mately 200,000 materials registered to date, and the data entry
steadily increases by ~5000 every year1. The sheer size and active
expansion of the database reflect that new materials continue to
drive scientific and engineering advances in fields such as
electronics, energy harvesting/storage, and high-Tc superconduc-
tors2–8.
Despite the vast material library available today, it is far from

being complete in ternary or higher-order (simply multinary
hereafter) phases. Based on a rough estimate, only approximately
16 and 1% of ternary and quaternary compounds, respectively, are
at least partially revealed9. This inspires reasonable hope that
valuable materials can be discovered in the largely unexplored
multinary domain. Furthermore, the current material repositories
are chemically and synthetically biased. For instance, elemental
occurrences within ternary compounds peak at oxygen with
22,476 counts in the ICSD, which is more than three times that of
the next most frequent elements (Fe, Si, and S). This is mainly
because oxygen is the most earth-abundant element and forms
stable compounds with most metals. In addition, oxides are easier
to synthesize than other compounds and benefit from synthetic
recipes established throughout the long history10–12. This indi-
cates that the present material database is biased toward those
with facile synthesis, possibly missing promising compounds that
are unfamiliar today13.

Considering the very large gap between current experimental
throughput and the number of unknown materials, together with
rising synthesis barriers, exploring the uncharted chemical space
solely by experiment would be inefficient. Alternatively, experi-
mental endeavors can take advantage of computational pre-
screening based on the density-functional theory (DFT)
calculations. This has been demonstrated by a multitude of recent
publications in which the discovery of new materials was
accelerated by DFT calculations: cathodes for Li-ion batteries14,
nitride semiconductors15, metal nitrides13, 18-electron com-
pounds16, boron-based MAX phases17, and high-Tc superconduc-
tors18–20. Throughout these works, DFT results were able to
suggest compositions that are presumably stable under ambient
conditions and thus have high synthesizability. In addition, DFT
predictions of basic properties could steer experimental resources
to materials appropriate for specific applications.
Despite great promise, the current computational exploration of

unknown materials inherently suffers from low throughput; in
contrast to the high-throughput screening of materials cataloged
in the ICSD21,22, the investigation into as-yet-unreported materials
should start from the crystal structure prediction (CSP), preferen-
tially for equilibrium phases with the lowest Gibbs free energy
(evaluated at the DFT level) under given chemical composition
and thermodynamic conditions. However, CSP is a classic NP-hard
problem in which the computational load in identifying the global
minimum exponentially increases with material complexity23.
Compounded further by the high costs of DFT calculations, this
results in extremely low throughput of DFT-based CSP. Conse-
quently, computational investigations are often limited to known
prototypes13,14 or short evolutionary steps15,16, which risks
resulting in metastable structures instead of the ground state.
Reflecting this, the compositional territory has been scanned
rather ‘conservatively’ over subsets close to known chemical
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families. If free energies can be evaluated much faster than with
DFT, then more aggressive and far-reaching exploration will be
viable on a large scale, raising the chance of discovering materials
with novel functionalities.
Recently, machine-learning potentials (MLPs) have attracted

considerable attention because they can provide close to DFT-
accurate energies at a fraction of the cost, which finds immediate
applications to structure prediction of crystals24–31, nanoclus-
ters32–38, and surface structures39. As such, the structure prediction
based on machine-learning potentials is by now a well-established
approach. In applying machine-learning potentials to CSP,
however, one is faced with difficulties in choosing training sets
without information on crystal structures. We recently suggested a
way to resolve this problem by using melt-quench molecular
dynamics (MD) simulations40. The liquid simulation can self-start
from a random distribution with rapid equilibration; thus, a priori
information on the crystal structure is not required. In addition,
the MD trajectory automatically samples diverse local orders that
may appear in stable or metastable crystalline structures. We
demonstrated that the Behler-Parrinello-type neural network
potential (NNP)41 trained with the melt-quench-annealing trajec-
tories can serve as a high-fidelity surrogate model in CSP.
Going beyond the previous achievement, we herein develop a

structure prediction framework combining NNPs with evolutionary
or random searches, named SPINNER (Structure Prediction of
Inorganic crystals using Neural Network potentials with Evolu-
tionary and Random searches). Free from any empirical knowl-
edge on material structures, the program identifies the global
minimum in a brute-force style by harnessing the accuracy and
speed of NNPs. Furthermore, SPINNER incorporates algorithms
tuned for MLPs within the genetic algorithm, thereby maximizing
the search efficiency for multinary compounds. In blind tests on
ternary compounds with significant complexity and diverse crystal
symmetries, SPINNER successfully identifies the experimental (or
theoretically more stable) phases for ~80% of the cases. The
program also outperforms other favored approaches such as data
mining42, evolutionary algorithm43, and particle-swarm optimiza-
tion44, in the majority of test materials. The average computational
throughput is ~4 days per one composition on a 36-core node
including overheads for the MD simulation and training proce-
dure, which is estimated to be 102–103 times faster than pure DFT-
based approaches. The outstanding performance of SPINNER
allows for large-scale, open computational exploration of undis-
covered inorganic crystals.
The basic workflow of SPINNER is schematically presented in

Fig. 1a. In brief, for an input chemical composition (elements and
stoichiometry), SPINNER first carries out a melt-quench-annealing
simulation and trains an NNP with MD trajectories. To enhance the
accuracy for ordered phases, the NNP is iteratively retrained over
low-energy structures in the refining-stage CSP (the upper part of
Fig. 1a). Unlike previous works24–26, the present approach does
not sample high-energy structures and selects only low-energy
structures which are relevant for the ground state. This contributes
to thinning the final candidate pool, thereby reducing the
computational cost of DFT calculations significantly. In the main
CSP proceeding up to 5000 generations (the lower part of Fig. 1a),
SPINNER collects low-energy candidate structures within 50 meV
atom−1, which are finally sorted after full relaxations at the DFT
level. For DFT calculations, we use the Vienna Ab initio Simulation
Package (VASP)45 with the Perdew-Burke-Ernzerhof (PBE) func-
tional for exchange-correlation energies46. Figure 1b shows a
schematic of the present evolutionary algorithms that are based
on random generation, crossover, permutation, and lattice
mutation. The random generation is heavily used over mutations,
which we find to be instrumental in multi-component systems.
Detailed descriptions of DFT calculations and evolutionary
algorithms are provided in the Methods section. We stress that

no empirical information (for instance, prototype data47, bonding
topology48, or Pauling’s rules49) is used in the present CSP scheme.
We introduce several features into the program to consider the

unique characteristics of MLPs. Most importantly, the pairwise
radial distributions obtained from the melt-quench process sets
the minimum distances (named as MQ distance constraints) that
are used in random structure generation and structure relaxation.
The MQ distance constraint prevents unphysical structures caused
by the poor extrapolation accuracy of MLPs, and also contribute to
generating low-energy structures (see Supplementary Fig. 1).
(Such distance constraints would be unnecessary in MD-based
structure prediction50 in which pair-wise distances remain in a
physically relevant range). In the crossover algorithm, on the other
hand, we utilize atomic energies to suppress unnecessary
disruption of stable chemical units (see Supplementary Fig. 2).
The effect of these features will be demonstrated in the Discussion
section.

RESULTS
Selection of test materials
In benchmarking search algorithms tackling NP-hard problems,
the global minimum is usually unknown. The situation is slightly
different in CSP because the equilibrium structures that are
experimentally resolved by diffraction analysis mostly equate to
the global minimum for the given chemical formula and
thermodynamic conditions. Therefore, blind tests with the
compositions reported in the ICSD can serve as an ultimate
evaluation of the performance of a CSP algorithm. Here we focus
on ternary compounds because the corresponding database
spans a wide range of chemistries and structural prototypes.
Within the ICSD, we first select ternary compounds measured at

room temperature or below and at atmospheric pressure, as we
are mainly concerned with materials that are stable under
ambient conditions. We also consider only high-quality (R < 0.1)
ordered crystals with well-defined structures and rule out
molecular crystals as well as compounds including 3d transition
elements (V–Zn), lanthanides and actinides. In the latter materials
with 3d and f electrons, the magnetic ordering influences the free
energy, but the current implementation of NNPs has yet to resolve
the energy scales of magnetic interactions. (We note that
meaningful developments are underway51,52). When distinct
crystal structures with the same composition are available in the
ICSD, the most stable structure within the PBE functional is
regarded as the reference. Among the filtered structures, we
randomly select 50 materials under the condition that at least one
crystal is selected from the 32 crystallographic point groups
(omitting 6/m due to zero occurrence), which secures the diversity
of the test structures. To exclude structures that are too simple, we
choose compounds with the formula units (Z) in the primitive cell
being at least 4. (So, the numbers of atoms are at least 12). We
additionally handpick 10 structures to further diversify local motifs
and chemistry. The full list of the selected 60 materials is provided
in the Supplementary Information. Regarding the bandgap (Eg),
there are 18 metals, 13 semiconductors (0 < Eg ≤ 2 eV), and 29
insulators (Eg > 2 eV). (The finite band gaps are calculated within
one-shot hybrid functional calculations53,54). Most structures have
a hull energy of 0 in the Materials Project database55 (see
Supplementary Table 1).

Structure prediction by SPINNER
In running SPINNER, we assume the same Z value as in the ICSD
structure. Figure 2a shows ΔEmin, the offset of the PBE energy of
the most stable structure after 5000 generations of structure
search from that of the experimental structure. Since the pool size
is 24–80 (see the Methods section), up to half a million structure
relaxations are performed for each composition. The color code of
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the data indicates the earliest generation at which the minimum
energy structure is identified (Ng). For 75% of the compositions (45
of 60), SPINNER predicts the reference (ΔEmin= 0) or a lower-
energy (ΔEmin < 0) structure, which is mostly found within 1000
generations (38 of 45). The largest error occurs for Sr2Pt3In4 with a
ΔEmin of 36 meV atom−1. Figures at the bottom of Fig. 2a display
the unit cells of some materials with ΔEmin= 0.

In Fig. 2a, six materials have negative ΔEmin down to −16meV
atom−1, meaning that the structure found by SPINNER is more
stable than the experimental phase within the PBE functional. We
note that both structures share almost the same local order,
differing in ranges only beyond ~4 Å. Since the ICSD does not
register any other experimental structures for these compositions,
the energy ordering by the PBE functional is likely incorrect,

Fig. 1 Schematic workflow of SPINNER. a Schematic depiction of the whole workflow of CSP. Top left: An initial NNP is trained over
disordered structures sampled from melt-quench-annealing trajectories of a given composition obtained by DFT calculations. Top right: The
initial NNP is iteratively refined over low-energy crystal structures obtained during 400 generations of the structure search. Bottom left: With
the refined NNP, the structure search is carried out up to 5000 generations. The quality of the NNP is monitored every 1000 generations.
Bottom right: Free energies of final candidates are evaluated by DFT calculations. b Left: Representation of the evolutionary algorithm. Under
given fractions of random structure generation and mutations (crossover, permutation, and lattice mutation), new structures are generated for
the next generation while low-energy structures additionally survive. Right: The schematic illustration of each generation method is
presented. Decision chart in the random generation represents distance constraints.

S. Kang et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)   108 



calling for further investigation. In ref. 56, the PBE functional was
found to incorrectly stabilize metastable phases for some binary
materials, which was partly resolved by the SCAN functional57,58.
To check whether this is the case for the six materials with
negative ΔEmin’s in Fig. 2a, we recalculate their energies as well as
those of experimental structures using the SCAN functional (the
structures are fully relaxed within SCAN). The empty squares in Fig.
2a are the ΔEmin’s obtained by the SCAN functional. Except for
PbOsO3 and LiYSn, the ΔEmin values becomes positive. On the
other hand, when tested over 10 compounds with ΔEmin= 0, the
SCAN functional correctly produces the lowest energy for the ICSD
structures among the low-energy structures found by SPINNER.
This confirms that the SCAN functional is more accurate than PBE
in the energy ordering. Furthermore, we recalculate energies for
Tl3PbCl5 and PbOsO3 with spin-orbit coupling (SOC) on top of PBE
because heavy elements such as Tl, Pb, and Bi possess large SOC.
As a result, the ΔEmin for Tl3PbCl5 and PbOsO3 increases to −0.2
and 16meV atom−1, respectively (see sun crosses). The foregoing
discussions indicate that the incorrect energy orderings in PBE are
effectively rectified by introducing more sophisticated energy

functionals. (Nevertheless, the bare PBE functional without SOC
correctly reproduces the equilibrium phases in many composi-
tions including Tl, Pb, and Bi).
We assess the inference accuracy of NNP based on two metrics:

The first is the absolute energy difference (ΔE0) between DFT and
NNP for the experimental structure (relaxed within each method),
which relates to how well NNP predicts the structure and energy
of the reference structure. The second metric (ΔĒ) is similar to the
first one but it is averaged over final candidates within the bottom
50meV atom−1. ΔĒ indicates how accurately NNP ranks the
energies of stable and metastable phases. ΔE0 and ΔĒ are
provided for every material in Supplementary Table 1. When
averaged over materials with ΔEmin ≤ 0, ΔE0 and ΔĒ are 12.9 and
11.8 meV atom−1, respectively, meaning the potential energy
surfaces of DFT and NNP agree well around the equilibrium and
low-energy metastable structures. This confirms that the trained
NNPs are good surrogate models of DFT. The remaining errors are
partly attributed to a low resolution in describing medium- to
long-range order beyond cutoff radii of descriptors, which are 6
and 4.5 Å for radial and angular parts, respectively. This can be

Fig. 2 Search results of SPINNER against structures in the ICSD. a Distribution of the energy difference between the most stable structure
found by SPINNER and the ICSD structure (ΔEmin). The negative, zero, and positive ΔEmin indicate that SPINNER found more stable structures
than the ground state, exact ground states, and metastable structures, respectively. The color codes indicate the generation at which the
lowest-energy structure was identified (Ng). The circle, square, and sun cross indicate the exchange-correlation functional and diamonds are
results obtained with the conventional cell. Equilibrium structures of some compositions with ΔEmin = 0 are displayed below. b Definition and
distribution of Nt and Nm for materials with ΔEmin ≤ 0; Nt denotes the number of generations that elapsed from random seeding until the
ground state is identified, and Nm is the number of mutations involved in this process. Nt = 0 means that the ground state is directly obtained
by relaxation from a random structure. c, Schematic illustration of potential energy surfaces by the DFT and NNP.
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improved by increasing the cutoff radius, but it adversely affects
the computational efficiency due to rising costs in evaluating
descriptors. The analysis on the failed cases (ΔEmin > 0) is given in
the Discussion section.
To understand how SPINNER effectively navigates the complex

configuration space, we analyze the evolutionary steps leading to
the experimental structure for materials with ΔEmin ≤ 0 based on
two parameters, Nt and Nm. As schematically shown in Fig. 2b, Nt

counts the generations from random seeding to the appearance
of the equilibrium structure at Ng. Nm indicates the number of
mutations within Nt steps. The distribution of Nt in Fig. 2b shows
that Nt is 0 for almost half of the cases, meaning that the ground-
state structure is obtained directly from relaxing a random
structure, without any mutations involved. Even in cases under-
going finite mutations, Nm is mostly within 5. (The permutation
and lattice mutation are used in 34 and 66% of cases,
respectively). Intriguingly, the randomly generated structures are
very close to the global minimum. There are two reasons
contributing to this. The first is the MQ distance constraints in
which the pair-wise minimum distances during melt-quench-
annealing trajectories are imposed as constraints in the structure
generation and relaxation (see the Methods section). This
condition filters out ~99% of the randomly generated structures
that are unlikely to relax into low-energy structures (see the
decision tree in Fig. 1b). It also effectively protects atomic
configurations from evolving into unphysical structures during
relaxation. Note that the minimum distance constraints extend to
2–3 Å for some pairs, which are much stronger than simple
conditions preventing too short bonds. Second, we find that when
the random structures leading to the global minimum are relaxed
within DFT instead of the NNP, more than half of them relax to
high-energy metastable structures instead of the global minimum.
This implies that the energy landscape around the global
minimum is different between DFT and the NNP (see Fig. 2c).
That is, DFT calculations adaptively forms chemical bonds that can
locally stabilize the initial configuration; thus, the search can be
stuck at a high-energy metastable structure. Having not machine-
learned such chemical bonds, the NNP unwittingly smooths out
the corresponding energy region, directing the structure to the
global minimum. Figuratively, the NNP “catalyzes” the relaxation
process to the equilibrium, eliminating or lowering energy barriers
around certain metastable structures. This also effectively
increases the multi-dimensional volume of the configurations
that can funnel down to the equilibrium structure.
We also examine whether SPINNER can identify metastable

structures that were found experimentally. According to ICSD,
Na3PS4, TlSbO3, TlGaSe2 have ordered metastable phases reported
with high sample qualities (R < 0.1) and Z less than or equal to the
ground state. Within PBE, these structures lie within the energy
window of 50meV atom−1, and it is confirmed that SPINNER
identified all of these metastable structures.

Comparison with other approaches
To benchmark SPINNER against other CSP methods, we select
ternary structures from the literature that were theoretically
predicted by either data-mining known prototypes13,16,59–61 or
using DFT-based evolutionary approaches such as a genetic
algorithm62–64 or particle swarm optimization65. The materials are
listed in Fig. 3a and they are all nonoxides (nitrides, borides, etc).
This is because the structures and chemistries of oxides were
thoroughly studied compared to other groups, such as nitrides
and sulfides, so most studies exploring new materials have
focused on nonoxides.13,66 None of these compositions has ever
been synthesized as far as we are aware except for KScS2, Sc2C3N6,
and ScPtBi (see below). For the test compositions, we perform CSP
with SPINNER up to 1000 generations with Z ranging from 2 to 8.
The plot at the top of Fig. 3a shows ΔEmin in reference to the

structure in the literature. (The structures from the references are
fully relaxed within the present DFT method). SPINNER identifies
lower-energy structures for the majority of cases (13 of 21) and the
same structures for the rest. In ref. 64, CSP was performed with the
PBEsol functional67 instead of PBE for Sn5S4Cl2 and Cd4SF6. As a
comparison, we evaluate ΔEmin with PBEsol and find that
compounds identified in this study are still more stable than
those predicted in the reference by 31 and 4meV atom−1 for
Sn5S4Cl2 and Cd4SF6, respectively. The lower part of Fig. 3a shows
Z values of the primitive cells with the lowest energies (solid
squares) in comparison with those in the references (solid circles).
Lower energies are found mostly at Z values higher than those in
the literature. In addition, SPINNER finds the lowest-energy
structure often at a larger Z than that of the identified primitive
cell. (There are 8 cases in which Z is bigger than that used in the
reference. Using the same Z, we obtain the identical structures in
the literature for Ti3O3N2, Zr3O3N2, Li2SnN2, Li2TiN2, W4Mo4B15
while lower energies are still found for AlPtSb (−3.5 meV/atom),
Cd4SF6 (−4.9 meV), and TaCN3 (−47.8 meV)). This indicates the
significance of trials with diverse Z numbers. The NNP is far more
advantageous in varying Z than DFT owing to the linear scaling
with respect to the number of atoms, in contrast to the cubic
scaling of DFT. It is noted that for Sn5S4Cl2, Cd4SF6, and TaCN3, hull
energies are positive for both reference structures and those
identified by SPINNER. Nevertheless, we do not find any signature
of phase separations in the final structures (see Cd4SF6, and TaCN3

in Fig. 3), indicating that the lower-energy structures found by
SPINNER are not artifacts of the phase separation.
While structures found by SPINNER have usually local structures

similar to reference structures (such as KScS2 and W4Mo4B15 in Fig.
3b), different short-range orders appear in materials, such as
Li2TiN2, Cd4SF6 and TaCN3 (see Fig. 3b). We note that Cd4SF6 and
TaCN3 were discovered by DFT-based evolutionary searches64,65.
The failure of the previous works in identifying the present lower-
energy structures might be attributed to small Z numbers and/or
few generations. In Fig. 3a, Na3OsN2 shows the biggest energy
drop. Both structures are similar in local order, but the reference
structure is distorted from that found by SPINNER. We comment
that metastable structures can have distinct physical properties
compared to the ground state. In the example of HfO2, the high-
temperature tetragonal phase that is metastable by 57meV
atom−1 at 0 K possesses a far higher dielectric constant (70) than
that for the low-temperature monoclinic phase (16)68. This
underscores the importance of identifying the true global
minimum for the accurate prediction of material properties.
For the 13 structures newly identified in Fig. 3a by SPINNER, we

check the existence of corresponding prototypes in the ICSD using
AFLOW-XtalFinder69. It is found that 10 of 13 materials do not
have any matching prototypes (star-marked in Fig. 3a). This
suggests that the current prototypes for the ternary phase are not
sufficiently cataloged, which is understandable because materials
such as nitrides have been synthesized much less frequently than
oxides. Notably, the prototype of the SPINNER-identified Zr3O3N2

and Ti3O3N2 is commonly Ti3O5. We think that ref. 59 missed the
ground state because they did not fully consider partial ion-
exchanges replacing O with N. In passing, the three compositions
for which SPINNER and previous evolutionary searches agree have
corresponding prototypes in the ICSD.
Sc2C3N6 was recently synthesized with the structure predicted

by data mining70, which was confirmed by SPINNER. For KScS2,
there was an experimental report71 preceding the theoretical
prediction, which was not recognized by ref. 61. The experimental
crystal structure is consistent with the present work, which is more
stable than that for ref. 61 by 2.5 meV atom−1(see Fig. 3b). The
crystal structure of ScPtBi was predicted and confirmed by the
synthesis in ref. 16. Although it was grown as a multiphase,
SPINNER does not identify any phases within 50meV atom−1

other than the one predicted in ref. 16.
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DISCUSSION
Regarding the computational cost, the whole computation from
the melt-quench-annealing MD to 5000 CSP steps takes 3–5 days
on a 36-core node (CPU of Intel® Xeon Platinum 8000-series). (For
1000 evolution steps, it takes 2–3 days). This excludes human time
in managing data flow and making decisions, which can be
executed instantly by automation (under development). In the

case of Mg2SiO4 for example, the workload can be split into the
DFT-MD (32%), training of the NNP (16%), SPINNER (49%), and DFT
relaxation of crystals (3%) (see Fig. 4a). The computational time for
the DFT part varies widely depending on the number of electrons.
The SPINNER part is highly scalable on massively parallel
computers. For SPINNER, it takes 58 h for 5000 generations with
the pool size of 56 and Z= 4. When tested with the same
computational resources and conditions, a DFT evolutionary

Fig. 3 Benchmark results of SPINNER against other methods. a Upper part shows energy difference between the structure predicted by
SPINNER and the reference structure (ΔEmin) predicted by data mining or evolutionary algorithms. The lower part compares the formula unit
in the unit cell (Z) between the reference and the value at which the lowest energy is found by SPINNER. The structures are adopted from
ref. 13 (Li2HfN2, Sc2C3N6, Hf2SeN2, Na3OsN2), ref.

59 (Ti3O3N2, Zr3O3N2), ref.
60 (Li2SnN2, Li2SnF6, Li2TiN2), ref.

61 (KScS2), ref.
16 (HfIrP, ScPtBi,

AlPtSb), ref. 62 (Hf3PB4, Zr2InB2), ref.
63 (WMo5B6, W4Mo4B15), ref.

64 (Sn5S4Cl2, Cd4SF6), and ref. 65 (Hf2CN4, TaCN3). The chemical formulas with
star marks do not have corresponding structural prototypes in the ICSD. b Examples illustrating the structural difference between the crystal
structures in references (top) and ones identified by SPINNER (bottom).
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program (USPEX)43 could proceed up to only 31 generations
under the setting suggested in the manual (Fig. 4b). (The full
computational setup is provided in Supplementary Information).
Therefore, the entire 5000 generations would take several years
for DFT calculations. (We add that actual generations required for
identifying the equilibrium phase can be different between DFT
and NNP). The estimation of time and cost indicates that it would
be viable to construct databases of ~1000 materials targeted for a
specific application at a reasonable cost and in a reasonable time
frame.
We also compare SPINNER with USPEX43 employing NNP

(USPEX-NNP) to directly test the effects of various features
developed in the present work such as MQ distance constraint,
crossover algorithm using atomic energies, and iterative training
scheme. Since USPEX incorporates state-of-the-art genetic algo-
rithms for CSP, this would be an informative test comparing
conventional methods with the present method. For a fair
comparison, the pool size is the same and the suggested options
in the manual are used for USPEX. The results are shown in Fig. 4c.
(The empty symbols at the final generation indicate DFT energies).
It is seen that SPINNER outperforms USPEX-NNP by 34meV/atom.
Similar performance gaps are observed for CdI2O6, Sr2P7Br, and
MgIrB (see Supplementary Fig. 3).
Despite impressive performance, SPINNER failed with 25% of

test ternary materials, which merits further discussion. First, ΔE0
and ΔĒ averaged over materials with ΔEmin > 0 (see Supplemen-
tary Table 1) are 41.0 and 43.3 meV atom−1, which are
substantially larger than 12.5 and 11.9 meV atom−1 for structures
with ΔEmin ≤ 0. Most notably, the NNPs for SnGeS3 and Sr2Pt3In4
show the largest ΔE0 (ΔĒ) of 75.5 (227.3) and 83.5 (140.0) meV
atom−1, respectively. For these materials, locating the equilibrium
structures would be very difficult, as they are high in the energy
scale. The origin of the poor NNP quality requires further
investigation. (Increasing the cutoff radii of descriptors was not
helpful). Second, among the failed cases, qualities of the NNP are
acceptable in several materials, with accuracy metrics on par with
those with ΔEmin ≤ 0. In these materials, the experimental
structures would be found in principle by extending the
evolutionary process beyond 5000 generations. We note that
BaGe2S5, Na3SbO3, and YPdGe have rather flat or pointed cell
shapes while their conventional unit cells have more isotropic and
3-D-like structures. However, RandSpg72, the random structure

generator used in the present study, generates atomic configura-
tions based on the conventional unit cell, which may have
affected search efficiency. Therefore, we additionally carry out
structure searches with Z equal to that of the conventional cells
(see Supplementary Table 1). In all three cases, SPINNER
successfully identifies experimental or theoretically more stable
structures (see diamonds in Fig. 2a).
Even though the training set is constructed within a specific

stoichiometry, dynamic fluctuations during the melt-quench-
annealing process extend the transferability of NNPs, enabling
transfer learning to other compositions. For example, employing
the NNP developed for Mg2SiO4, we try CSP for MgSiO3 and
SPINNER successfully identifies the experimental crystal structure
(ICSD-ID of 196432). Since the NNP training set has a single
stoichiometry, atomic-energy offsets among chemical species
become arbitrary, resulting in constant energy shifts between the
DFT and NNP energies for crystalline structures of MgSiO3

73.
Nevertheless, energy ordering among the low-energy structures is
well maintained, leading to the successful identification of the
equilibrium phase. In addition, one can refine the NNP with DFT
results for a small number of MgSiO3 crystals, which effectively
removes the energy offsets. We also confirm that the transfer
learning works even for cases involving valence changes, for
example, MoPdO5 → MoPdO4 and InPbO3 → In2PbO4. Such
transfer learning would be highly effective when one tries to find
relevant stoichiometries for unknown materials.
To test SPINNER on compounds other than ternary phases, we

carry out similar studies on TiO2, P3N5, NbPd3, Li10GeP2S122, and
InGaZnO4

3 whose equilibrium structures are experimentally
known. In all cases, ground-state structures are found within or
around 5000 generations. TiO2 is well known for rich polymorph-
ism.74 With Z= 4 and 8, SPINNER obtained all the experimental
polymorphs (C2/m, anatase, brookite, columbite-type, rutile)
within the energy window of 50meV atom−1. In addition, SPINNER
finds 7 unreported structures of TiO2 including 3 theoretical
structures present in the Materials Project database55. Even
though the test sets are small compared to the ternary
compounds, these results support that the present CSP framework
works regardless of material complexity. However, quaternary or
higher-order compounds may generally require longer genera-
tions than in the present work, which needs further investigation.

Fig. 4 Computational efficiency of SPINNER. a Schematic diagram showing the relative time spent on each step for Mg2SiO4. b Comparison
of the SPINNER to the USPEX code with DFT calculations in the case of Mg2SiO4. In the Figure, ΔEmin of SPINNER and USPEX are evaluated by
NNP and DFT, respectively. c Comparison of the SPINNER to the USPEX code with NNP calculations. ΔEmin of filled points are calculated by
NNP and the empty points are the lowest DFT energies among the structure candidates within an energy window of 50meV/atom.
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METHODS
Training machine-learning potentials
The NNPs used in CSP are first trained with DFT-MD simulations on the
melt-quench-annealing trajectory of each compound. All DFT calculations
are performed with the Vienna Ab initio Simulation Package (VASP)45 and
the Perdew-Burke-Ernzerhof (PBE) functional is used for the exchange-
correlation energy of electrons46. The initial structures are prepared by
randomly distributing ~80 atoms under the given composition and
superheating them at 4000 K for 4.5 ps (premelting). Next, we obtain
liquid-phase trajectories for 16 ps at ad hoc melting temperature (Tm)
obtained by the scheme proposed in ref. 40. Subsequently, the liquid is
quenched at a cooling rate of 200 K ps−1 from Tm to 300 K and then
annealed at 500 K for 4 ps to sample amorphous structures. The cutoff
energies and k-point meshes are chosen for the pre-melted structures
such that the energy, forces, and stress tensors converge to within 20meV
atom−1, 0.3 eV Å−1, and 10 kbar, respectively. As an alternative to the melt-
quench-annealing simulation, we find that the metadynamics in the
atomic environment space75 can also generate trajectories that can be
used as training sets for CSP. (However, computational costs are higher).
We also note that using the data-mining method42 can sample diverse
local orders contained in existing databases, and may augment the
sampling and increase the reliability of NNP.
For training NNPs, we use the SIMPLE-NN package76. Behler-Parrinello-

type symmetry function vectors are adopted as input features. For each
pair of atomic species, 8 radial and 18 angular components are used with
cutoff radii of 6 and 4.5 Å, respectively77. We train the NNPs until the root
mean square errors of the validation set reduce to within 20meV atom−1,
0.3 eV Å−1, and 20 kbar for the energy, force, and stress components,
respectively. Other parameters for NNPs are identical to ref. 40.
To enhance accuracy on ordered phases, the NNPs are iteratively

retrained over low-energy structures in the refining-state CSP (the upper
part of Fig. 1a). With the NNPs trained by the melt-quench-annealing
trajectories, we carry out CSP for 50 generations and select 10 structures: 5
lowest-energy structures and 5 structures with the lowest antiseed weights
(see below) within the bottom 100meV atom−1. These structures are
further relaxed within DFT by using AMP2 53. The relaxation terminates
when atomic forces and stress tensors are less than 0.1 eV Å−1 and 20 kbar,
respectively. The atomic positions and energies are sampled during the
DFT relaxation, which are augmented to the training set for refining the
NNPs. We find that the initial cell structure sometimes undergoes
significant deformations, which necessitates adapting the k-point mesh
consistently. To this end, the k-point mesh is checked and modified every
10 relaxation steps according to the converged k-point spacing. Then, we
continue CSP and retrain the NNPs at 100, 200, and 400 generations in
similar ways but excluding structures already learned in the previous
iterations. In total, 40 crystal structures are sampled to refine the NNPs.

Workflow of crystal structure prediction
With the refined NNPs, we perform up to 5000 generations of the main
CSP (the lower part of Fig. 1a). The structures are generated by random
seeding, permutation, lattice mutation, and crossover algorithms. Detailed
descriptions of each mode are provided in the next subsection. The
generated structures are relaxed within the NNPs using the LAMMPS
code78. We use the restraint option during structure relaxation, which
prevents atom pairs from being closer than a certain distance limit through
repulsive harmonic forces. The pair-wise distance limits are set to the
minimum values found for the corresponding pair during the melt-
quench-annealing process. The restraint option effectively prohibits the
structures from evolving into the untrained domain. In comparison, the
structural relaxation by DFT methods typically takes 102–103 times that of
the NNP.
To prevent unphysical structures from appearing as candidate

structures, we compare the single-shot DFT energy and NNP energy of
the lowest-energy structure every 1000 generations. If the discrepancy is
greater than 50meV atom−1, then the NNP is retrained over 10 structures
selected similarly to the refining stage (see above). Last, we perform DFT
structure relaxation for final candidates that lie within the bottom 50meV
atom−1 using the AMP2. For accurate evaluation of energies, we adopt
tight convergence criteria of 2 meV atom−1 and 3 kbar for energy and
pressure, respectively.

Evolutionary algorithms
Following ref. 43, SPINNER utilizes evolutionary algorithms to find the
global minimum in the configuration-energy space under the given
composition and Z number. From extensive tests, we find that random
generation, crossover, permutation, and lattice mutation algorithms are
particularly effective in the structure prediction of multinary phases, and so
the current version of SPINNER is based on these four-generation modes.
In generating random structures, the space group, lattice vectors, and
Wyckoff positions are selected randomly using the RandSpg package72.
The atomic density in the first generation is set to that of the amorphous
phase generated by the DFT-MD simulations. Then, the volume of each
structure in the ith generation (i > 1) is chosen randomly between 70 and
130% of the volume of the lowest-energy structure in the previous
generation. Distance constraints are imposed on all pairs of atoms such
that distances between pairs are longer than the minimum values found
for the corresponding pair during the melt-quench-annealing process. In
applying the crossover algorithm, we note that the conventional approach
often unnecessarily disrupts stable chemical units (for instance SiO4

tetrahedra in Mg2SiO4). To avoid this, SPINNER utilizes the atomic energies
of the NNP in choosing cutting planes such that the average atomic energy
within the slab is sufficiently low. The average atomic energies are also
used in adjusting lattice vectors and atomic registries in combining the
two slabs. This effectively conserves chemically stable local units. Since
atomic energies can be defined at the DFT level73,79, this algorithm would
be also applicable with DFT. We note that this approach is not compatible
with machine learning potentials including long-range interactions80.
During the evolutionary steps, the structural similarity is measured by

the partial radial distribution function (PRDF)81 and if two structures are
determined to be too similar, then one of them is discarded from the pool.
We note that PRDF becomes less sensitive for large supercells or more than
ternary systems because it averages out the local environments of atoms.
The atomic descriptor using symmetry functions of individual atoms would
provide more detailed information, which is under investigation. We also
adopt an antiseed algorithm to diversify the structure pool82. The antiseed
weight of ith structure (Ai) is defined as follows:

Ai ¼
X

a

exp � d2ia
2σ2

� �
; (1)

where the summation runs over structures in the inheritable pool (bottom
200meV atom−1 in the refining stage and 100meV atom−1 during the
main CSP), dia is the distance between the ith and ath structures measured
by PRDF, and σ is a Gaussian width. Unlike the original scheme82, we use
the antiseed weight in defining the probability (Pi ∝ exp(−Ai/σA) where σA
is a parameter) for a structure to be inherited in the next generation by
mutation (see below).
The number of structures generated by the operations is set to twice the

number of atoms in the simulation cell. The inherited structures are chosen
within the bottom 200 and 100meV atom−1 for the refining-stage and
main CSP, respectively, and we choose half of them randomly and the rest
are chosen according to the probability distribution of {Pi} defined in the
above. In the refining stage, ratios of operations of random generation,
crossover, permutations, and lattice mutations are 30%, 50%, 10%, and
10%, respectively. The crossover tends to generate diverse local orders,
which is useful in training robust NNPs. However, we find that the
algorithm is less effective in discovering the ground state of the generated
structures, so we exclude the crossover operation in the main CSP in which
random (70%), permutation (20%), and lattice mutation (10%) are
employed. In addition to the structural pool generated by these
operations, we carry low-energy structures in the bottom 100 and
50meV atom−1 to the next generation in the refining stage and main
CSP, respectively.

DATA AVAILABILITY
Except for materials already available in the literature, ICSD, and the Materials Project,
all of the lowest-energy structures found by SPINNER are uploaded to the Figshare
Repository83. They are also available at SNUMAT84 together with basic DFT results
such as band gaps. SNUMAT supports RESTful API for search and download.

CODE AVAILABILITY
The core part of SPINNER is available at https://github.com/MDIL-SNU/SPINNER. This
program carries out the evolutionary structure search based on the given NNP.
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SIMPLE-NN for training NNPs is open at https://github.com/MDIL-SNU/SIMPLE-NN. A
fully automated end-to-end version of SPINNER is under development.
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