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Dynamical simulation of field emission in nanostructures
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An efficient computational scheme based on the first-principles pseudopotential method is proposed for the
electron emission from nanostructures under an applied electric field. The emission rate of the electron through
the potential barrier is calculated by integrating the time-dependent Schro¨dinger equation for the states residing
initially inside the emitter. Our approach takes into account the three-dimensional feature of the nanostructure
as well as the realistic self-consistent potential. We have applied this method to the field emission of carbon
nanotubes. The calculated emission currents are in good agreement with experimental data and exhibit strong
dependence on the spatial distributions of the electronic wave functions.
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I. INTRODUCTION

A strong electric field applied on the metal surface pu
out electrons from the metal via quantum-mechanical tun
ing, which is called field emission. An analysis on the inte
sity of field-emitted electrons reveals valuable informati
such as the electronic structure of emitters or the variatio
the work function as surface conditions change.1 On the
practical side, the field emission can be used in the disp
device by controlling the extracted electrons to hit a desi
point of the phosphor screen. An array of field emitters
placing a bulky electron gun allows for a flat and thin d
play. Since the field-emission display operates at low te
peratures, it consumes far less energy than the convent
display such as a cathode-ray tube that is based on the
emission. These potential merits of the field-emission disp
have brought about industrial interests in developing a lar
scale and energy-efficient display based on the field em
sion.

The metal emitters used for the field emission are usu
designed to have a sharp edge in order to enhance the
electric field at the tip and achieve a high rate of elect
tunneling. The radius of curvature of the emission tip h
been typically around micrometers, but with the develo
ment in the fabrication technology and the advent of n
materials, smaller tips with nanometer radius, namely, n
otips, begin to be used.2 The nanotip is superior to the m
crotip in several ways. The most explicit advantage is
increase in the magnitude of the local electric field at the
end, which results in the enhancement of the emission
rent compared to the microtip under the same external fi
In addition, the low density of states at the tip makes
emitted electrons highly coherent and monoenergetic so
they can be used as an efficient source of the low-ene
electron point source microscope.3,4 The narrow opening
angle of the electron beam is also suitable for a local pr
of nanometric soft materials like RNA or carbon fibers.2 The
nanotip can be fabricatedin situ with a field-ion technique on
the metal surface: a local electric field greater than 1 V
rearranges the atoms that are mobile in the high-tempera
condition, producing a nanometric protrusion on the fl
metal surface. On the other hand, there are also mate
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generically retaining the geometric sharpness down to a
nometer scale. For example, the diameter of the carbon n
tube is only a few nanometers while its length can be
tended up to several micrometers.

The current-voltage (I -V) characteristics of microtips ar
well described by the Fowler-Nordheim~F-N! theory devel-
oped in 1928.5 This theory was formulated using the on
dimensional potential model with the free-electron-like me
of a given work function. The currentI was calculated with
the WKB approximation and its functional dependence
the bias voltage~V! is

I}V2expS 2
f3/2

bV D , ~1!

wheref is the work function andb is a constant propor-
tional to the field enhancement factor. In most experimen
situations, where the radius of curvature of the tip is grea
than a micrometer, theI -V characteristics follow the form o
Eq. ~1!, producing a straight F-N plot@ ln(I/V2) vs 1/V] and
this is usually taken as evidence that the emission is dri
by the field rather than by thermally excited electrons. T
local electric field at the end of the tip is obtained from t
slope of the F-N plot, using the known value of the wo
function. With its success in describing many experimen
the F-N theory has been the basic framework of many th
retical methods developed until now.

For studying the electronic behavior in the nanostructu
however, the simple picture of the F-N theory is not app
priate. First, the approximation of the tip as a squa
quantum-well potential is not justified at the nanometer sc
since the concept of a sharp boundary between the em
and the vacuum fails and the electronic structure sign
cantly deviates from that of the simple quantum well. Se
ond, the one-dimensional WKB approximation neglects
spatial variation of the wave function in thex-y plane ~the
emission is assumed to be in thez direction!. The three di-
mensional character of the wave function becomes impor
in the nanotip because thex-y dimension of the tip is com-
parable to atomic distances. Third, it is well known that t
adsorbate-induced localized states significantly change
emission current. The role of the localized states is p
©2002 The American Physical Society05-1
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nounced for the nanotip because the atomic size of the
restricts the number of channels for extended states. The
calized states are difficult to consider in the semiclass
approach because they are not the normally current-carr
states. These theoretical arguments are reinforced by ex
ments for nanotips showing anomalous results that are
clearly explained by the F-N theory. For example, the curr
from the nanotip is often saturated at the high voltage, res
ing in a nonlinear F-N plot.6,7 The peak position in the en
ergy distribution of the emitted electron is fixed at the Fer
energy of the emitter in the F-N theory as observed in
experiment using microtips, but it shifts down in nanotips
the voltage increases.8,9 In some experiments, the analys
based on the F-N model yields unreasonable w
functions.10,11

The above observations strongly indicate that the stud
the field emission of the nanostructure requires a more r
istic quantum-mechanical treatment. There have been se
attempts to go beyond the limit of the F-N theory: an ac
rate potential around the tip region has been obtained f
the quantum-mechanical calculation or from the solution
the Laplace equation with a three-dimensional boundary
the tip.12,13 However, the transmission functions in tho
methods are still evaluated in the one-dimensional met
by employing the semiclassical approach along a spe
line in the emission direction. Sophisticated quantu
mechanical methods have also been formulated and ap
to relatively simple systems such as a flat-metal surface14 or
a single-atom tip.15

In the present paper, we propose a conceptually diffe
scheme aiming at simulating the field emission of realis
nanostructures accurately. In the analysis of the fie
emission process, we do not make any simplifying assu
tions on the geometry, potential distributions, or electro
states. The transition~or tunneling! rate of the electron is
evaluated by monitoring the time evolution of the wave fun
tion initially confined inside the emitter. We will describe th
computational details below and then present the results
the field emission of carbon nanotubes as an example.

II. COMPUTATIONAL METHOD

For the convenience of explanation, we divide the syst
into three nonoverlapping regions along the emission dir
tion: the emitter (Semt), barrier (Sbar), and vacuum (Svac) as
shown in Fig. 1. The field-emission process can be thou
as the transmission of the electron fromSemt to Svac by tun-
neling throughSbar. Three steps in our approach for studyin
the field emission of nanostructures are explained below

A. Ab initio tight-binding calculation

The first step is to obtain the self-consistent potential t
drives the electron into the vacuum and the initial wave fu
tions to be used in the time evolution. This is accomplish
by anab initio calculation for a finite cluster imitating the ti
region of the nanostructure including the uniform exter
field (Eextẑ). The Hamiltonian in the pseudopotential forma
ism with the local-density approximation is composed of
08540
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kinetic operatorT, the local potentialVL , and the nonlocal
potential in the separable form proposed by Kleinman a
Bylander (VNL

KB),16

H5T1VL1VNL
KB ,

~2!
VL5VHxc@r#2eEextz,

whereVHxc is the Hartree and exchange-correlation poten
evaluated from the electron density. The nonlocal term i
sum of potentials contributed from individual atoms.

VNL
KB5(

t lm
VNL

t lm5(
t lm

uft lm
0 Vt l&^ft lm

0 Vt l u
Zt lm

, ~3!

where l and m are indices for the angular and azimuth
momenta, respectively,Vt l is the pseudopotential for thel th
angular momentum of thetth atom, ft lm

0 stands for the
atomic orbitals, andZt lm is the normalization factor.

In expanding wave functions, the localized orbitals a
used

cn
loc~r !5(

mt
amt

n fmt~r2Rt!, ~4!

wheren is the band index,Rt is the position of thetth atom,
andm indicates the angular and azimuthal momenta. In t
paper, the pseudoatomic orbitals are used forfmt(r ).17 By
adopting the localized basis, the number of basis functi
required for the calculation is reduced significantly. In ad
tion, the finite radii of the basis naturally make the wa
functions confined inSemt. The standard pseudopotenti
method is employed and the self-consistent iteration is p
formed for the accurate description of the effect of exter
electric fields.

A practical issue here is a realistic modeling of the na
otip. When the height of the tip is within a nanometer,
atoms in the tip can be included in the computation.8 In case
of micron-long nanotips such as carbon nanotubes, howe
millions of atoms are involved and quantum-mechanical c

FIG. 1. Computational scheme for evaluating the transition r
of an electronic state. The wave function is described with the
calized basis (fm) before the transition (t<0). For t.0, the basis
is switched to plane waves (eiGr) and the transition occurs.z0 is the
boundary used in evaluating the amount of the electron tunnel
Semt, Sbar, and Svac are the emitter, barrier, and vacuum region
respectively.
5-2
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DYNAMICAL SIMULATION OF FIELD EMISSION IN . . . PHYSICAL REVIEW B 65 085405
culations would not be feasible for such a large system.
high aspect ratio in these materials amplifies the local e
tric field at the front of the emitter, making the tunnelin
process easier. In our previous study on the field emissio
the carbon nanotube, it has been found that the local ele
field at the tip of a very long nanotube can be simulated
applying a higher electric field on a shorter tube.18 An im-
portant rule we have found there is that the charge accu
lation at the tube end is essentially a function of the prod
of the tube length and the external electric field. Since
electrons are mainly emitted from the end of the nanotip,
realistic description of the local electric field in the vicini
of the end part of the nanotip is sufficient for evaluating t
actual current in the experimental situation accurately. Th
the effect of the large length can be taken into account
scaling the external electric field inversely to the length
the tip in the calculation. To reiterate, a short nanotube un
a strong field may well simulate a long nanotube unde
weak field as far as the emission is concerned.

B. Relaxation of the wave function

The wave functions expanded with the localized ba
cannot extend intoSvac even though the potential ofSvac is
lower than that ofSemt. To simulate the electron-emissio
process, the basis set is changed to plane waves. The c
cients of the plane waves are obtained from the inverse F
rier transform of the wave function in Eq.~4!,

cn
PW~r !5(

G
aG

n exp~ iG•r !,

~5!

aG
n 5

1

VE cn
loc~r !exp~2 iG•r !dr ,

where V is the volume of the supercell. The coefficien
$aG

n % are most easily obtained by projecting thenth eigen-
state onto a regular grid and subsequently performing
inverse fast Fourier transformation.

Due to the incompleteness of the localized basis,
eigenstates calculated in the first step are slightly differ
from the exact ones. It causes a significant noise in the t
step to be described later, making it difficult to assign a p
cise value for the transition rate. To circumvent this proble
we find it necessary to introduce a relaxation step adjus
the wave function insideSemt to the exact eigenstate befo
calculating the time evolution of the wave function. As
measure of the deviation from the exact eigenstate, we
culate the norm of the residual vectord defined as

d5^RuR&,
~6!

uR&5~H82^cuH8uc&!uc&,

where the normalization ofuc& is assumed. In order to pre
vent the escape of the electron into the vacuum during
relaxation,~note that everything is expanded in plane wav
here! a strong repulsive potential (v rep) is added forz.z0 in
the Hamiltonian
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~7!
v rep5v0u~z2z0!,

whereHSC is the self-consistent Hamiltonian obtained in t
first step. Here,z0 effectively defines a boundary plane (z
5z0) perpendicular to the electric field separating the emi
and the vacuum.19 v0 of 1 Ry turns out to be sufficient fo
blocking the electron escape.

We have reducedd by iteratively updating wave function
through the direct-inversion-in-the-iterative-subspace~DIIS!
method, which we briefly recall in the following.20 In the
Nth DIIS step (N>3), a normalized wave functionux& is
constructed as a linear combination of the wave functions
the current iterative space

ux&5 (
k51

N21

ckuck&. ~8!

The first and the second wave function in the iterative sp
are directly given by

uc1&5ucn
PW&,

~9!
uc2&5uc1&1hKuR1&,

whereK indicates the preconditioning operation on the
sidual vector,21 h is the size of the trial step~chosen as 0.3!,
and uRi&5(H82^c i uH8uc i&)uc i&. The coefficients$ck% of
the Nth step in Eq.~8! are given by minimizing the norm o
the residual vector ofux&

uRx&5~H82^xuH8ux&!ux&

5 (
k51

N21

ck~H82^xuH8ux&!uck&

' (
k51

N21

ckuRk&, ~10!

where the residual vector is assumed to be linear with
wave function. Minimizing the norm ofuRx& for the normal-
ized ux& is equivalent to solving the generalized eigenva
problem with (N21) dimensions

(
j 51

N21

^Ri uRj&cj5l (
j 51

N21

^c i uc j&cj , ~11!

wherel is the eigenvalue. The lowest eigenvector leads
the desired$ck%, and henceuRx& from Eq. ~10!. Then a new
wave functionucN& is introduced in the iterative space

ucN&5ux&1hKuRx&, ~12!

with a subsequent normalization. If the norm of the resid
vector of ucN& is greater than a preset tolerance, theN
11)th DIIS step is performed in the same manner. Since
array dimension of the wave function is enormous in a ty
cal simulation of the field emission, the maximum size of t
iterative space,Nmax, is severely limited by the memory
space of the computer. In that case, we restart the DIIS l
with the final stateucNmax& as a newuc1&. In the DIIS
method, information on other bands is not required for mi
mizing the residual vector of the specific state, and the tim
5-3
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SEUNGWU HAN, M. H. LEE, AND JISOON IHM PHYSICAL REVIEW B65 085405
consuming orthogonalization process is avoided. For
original eigenstate constructed with the localized basis,d is
on the order of 0.1 a.u. and this is reduced below 0.001
after hundreds of DIIS steps. We find thatu^c1ucNmax&u2 is
always greater than 0.9, meaning that the overall shape o
initial wave function does not change much during the rel
ation.

C. Time evolution

The final procedure is to evaluate the transition rate
each state fromSemt to Svac under the self-consistent potenti
calculated in the first step. For this, we monitor the motion
the electron by integrating the time-dependent Schro¨dinger
equation

cn
PW~r ,t1Dt !5expS 2 i

HSC

\
Dt Dcn

PW~r ,t !, ~13!

whereHSC is the self-consistent Hamiltonian calculated
the first step. The initial wave function,cn

PW(r ,0), has been
set to the relaxed eigenstate in the second step. In solving
~13!, we adopt the split-operator method. The basic objec
of the split-operator method is to separate the noncomm
able operators in the exponent for a small time interval.
the second order ofDt, the exponent is decomposed into
symmetric form

expS Dt(
j 51

q

Aj D
5)

j 51

q

expS Dt

2
Aj D )

j 5q

1

expS Dt

2
Aj D1O~Dt3!,

~14!

where $Ai% is a set of operators mutually noncommutab
like kinetic and potential terms inHSC. With the exponent of
Hamiltonian in Eq.~2! separated following Eq.~14!, the
time-displacement operation can be efficiently carried ou
the real and reciprocal spaces where the potential and kin
operators are~semi!diagonal, respectively. The interchang
between two spaces is easily realized by fast Fourier tra
formation. The order of the error caused by the splitting c
be further reduced through a fourth-order decomposit
suggested by Suzuki22

S4~Dt !5)
i 51

5

S2~piDt !,

S2~Dt !5)
j 51

q

expS Dt

2
Aj D )

j 5q

1

expS Dt

2
Aj D , ~15!

where the parameterspi are chosen as

p15p25p45p55
1

4241/3
,

~16!
p35124p1 .
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With the above scheme implemented into Eq.~13!, we arrive
at the following formula for the time evolution:23

cn
PW~r ,t1Dt !.S4~Dt !cn

PW~r ,t !

5F)
i 51

5

S2~piDt !Gcn
PW~r ,t !, ~17!

whereS2 in the present case is

S2~x!5exp@2 1
2 iTx#S )

t lm

ascending

expF2
1

2
iVNL

t lmxG D
3exp@2 iVL

SCx#S )
t lm

descending

expF2
1

2
iVNL

t lmxG D
3exp@2 1

2 iTx#. ~18!

The exponential of the nonlocal potential can be expres
analytically

exp@xVNL
t lm#511uPt lm&Xt lm^Pt lmu,

~19!

Xt lm5

expFx
^Pt lmuPt lm&

Zt lm
G21

^Pt lmuPt lm&
,

whereuPt lm& stands foruft lm
0 Vt l& in Eq. ~3!. As mentioned

above, the kinetic operator is applied in the reciprocal sp
while the operations of nonlocal and local potentials are p
formed in the real space.

As time evolves, the electron starts to tunnel intoSvac and
the electronic charge inSemt begins to decrease. In order t
evaluate the tunneling rate of the electron in thenth state, we
integrate the square of the wave function forz,z0

Qn~ t !5Ez0E E ucn
PW~r ,t !u2dxdydz. ~20!

Qn(t) indicates the amount of the electron remaining inSemt
at time t. If we denotetn as a lifetime of thenth state, then
we have

Qn~ t !5e2t/tn. ~21!

Equation~21! implies a linear behavior ofQn in the short-
time region, as will be demonstrated in Sec. III. The slope
the linear curve corresponds to the transition rate of the e
tron in thenth state of the emitter of the display device in
the free traveling state that will ultimately hit the phosph
screen on the anode side.

There are many states contributing to the current and
total current of the nanotip is calculated as follows:

I 5e(
n

f nGn , ~22!

where f n is the occupation number of thenth eigenstate in
the model tip andGn is its transition rate~inverse to the
lifetime tn) estimated from the electron-tunneling (Qn vs t)
graph to be presented in Sec. III. Note thatf n as well asGn
5-4
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DYNAMICAL SIMULATION OF FIELD EMISSION IN . . . PHYSICAL REVIEW B 65 085405
generally depends onEext. Since the emission current most
originates from the states within 1–2 eV below the Fer
level, we only need to consider the time evolution of a fra
tion of states in the small energy window rather than
whole set of occupied states.

III. APPLICATION TO THE „5,5… CARBON NANOTUBE

The above method has been applied for studying the fi
emission of a carbon nanotube. The high aspect ratio and
mechanical strength inherent in the nanotube have open
new class of materials for the electron emitters of the fie
emission display.24 However, the emission mechanism of th
nanotube is still unresolved and many experimental findi
remain to be clearly understood.25 As a model system, we
have used the~5,5! carbon nanotube26 of 20 Å in length~see
Fig. 2!. Five pentagons are symmetrically placed around
circumference of the nanotube, closing the end of the na
tube with a hemisphere of C60. The open end of the nano
tube on the other side is passivated with hydrogen ato
Troullier-Martins pseudopotentials27 in the separable form
with a cutoff energy of 40 Ry are employed and a super
of 30 Å 330 Å 360 Å is used.

When the external field is applied, we find that the loc
field at the end of a particular tube is reduced significantly
the induced dipole moments in other supercells unless
lateral and vertical sizes of the supercell are much larger t
the tube length. The electric field due to surrounding sup
cells could be explicitly summed and subtracted from
total field by simplifying the charge distribution in the un
supercell as a sum of multipole~up to quadrupole! moments
centered at each atom. Figure 2 shows the difference
tween the self-consistent potentials with the external field
0.8 V/Å and without it. It can be seen that the constancy
the potential is maintained over the nanotube surface, as
pected from the metallicity of the~5,5! nanotube. The time

FIG. 2. Equipotential lines of the model system when the ex
nal field is 0.8 V/Å. Successive lines are separated by 1 V.
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incrementDt in Eq. ~13! is set to 0.1 a.u.~1 a.u.50.0242 fs!.
In the time evolution of individual eigenstates, two types
states are identified with quite different transition rates;
extended state and a localized state. An extended sta
distributed uniformly over the tube body while a localize
state is confined within the cap region. It is well known th
the topological defects such as pentagons in the~5,5!-capped
nanotube generate localized states whose amplitudes d
exponentially away from the cap.28

Figure 3 shows the change ofQn for a localized state as a
function of time. It can be seen that the tunneling rate
greatly enhanced as the applied field increases. Since
change ofQn right after the initiation of the tunneling pro
cess may depend on the position ofz0, we take a slope ofQn
in the time interval of 30 to 50 a.u. in evaluating the tran
tion rate. The result is found to be insensitive to the choice
z0. After a long time, the emitted electron is reflected by t
artificial boundary of the supercell and flows backwards
the carbon nanotube. This artifact causes a resonance~Rabi
oscillation! giving a large nonlinear change inQn . When we
adopt a longer supercell, the initial time interval with th
steady decrease ofQn increases.29 We evaluate the slope o
Qn well before the oscillation sets in. Note that the fracti
of the wave function escaped from the emitter is less th
0.01 at the end of the simulation time (; femtosecond! even
for the highest field in Fig. 3, which means that the simu
tion time is very short compared to the lifetime of the sta
tn . In a real situation, the empty state of the emitted elect
will be replenished very fast~around femtosecond! by the
extended states in the body of the nanotube overlapping
the localized states and the time lag due to the intratip tr
sition from extended states to localized states is neglig
compared with the rather slow process of tunneling (tn
; picosecond or slower!.

In Fig. 4, computational results of the transition rates u
der the external field of 0.8 V/Å are displayed for the sta
within 2 eV below the Fermi level. It is striking that th
transition rates of the localized states are far greater t
those of the extended states. The origin of this pronoun
current due to the localized state is revealed by inspectio

r-

FIG. 3. Change ofQn ~the charge remaining in the nanotube! for
a localized state as a function of elapsed time. The data are plo
for three different external fields~0.4, 0.6, and 0.8 V/Å!.
5-5
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SEUNGWU HAN, M. H. LEE, AND JISOON IHM PHYSICAL REVIEW B65 085405
its spatial distribution: The localized state is near the end
the nanotube where the local electric field is largest and
electron in this state can easily tunnel out to the vacuu
This is an exemplary case showing that the spatial distr
tion of the wave function as well as its energy level is im
portant for the tunneling rate. The transition into the co
tinuum state inSemt implies broadening of the density o
states and we estimate the intrinsic broadening of the lo
ized states due to the tunneling transition to be as sma
;1.0 meV.

Figure 5 shows the computedI -Eext curve for the model
nanotube. The exponential growth of the current with resp
to the external field is noticeable and the F-N plot presen
in the inset is linear as predicted from the classical F-N f
mula. This indicates that the F-N formula provides a use
scheme for the purpose of the data fitting, although the F
theory may not be strictly valid in nanostructures and
interpretation of the fitting parameters should be done w
caution. It would be desirable to compare the calculated
rent with experimental data. However, a direct comparis
with experiment is not feasible at present; the current in
periment is usually measured as a function of the app

FIG. 4. Transition rates for the states within 2 eV below t
Fermi level when the external field is 0.8 V/Å. The localized sta
are partially filled because of the Gaussian broadening of 0.1
used in the density of states.

FIG. 5. Current-external field characteristics of the~5,5! nano-
tube. The inset is the F-N plot.
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voltage and the relationship between the applied voltage
the electric field at the tip is complicated when the anode
cathode are not flat surfaces.~In case of the experiment
performed with the flat anode and cathode, the uncertaint
the number of emission sites obscures an accurate com
son.! For a reasonable criterion for the comparison,
choose the effective local electric field (Eloc) evaluated from
the F-N plot ofI -Eext ~this work! or I -V ~experiment! curves.
From Fig. 5, the computed current is 100 nA whenEloc is
0.85 V/Å. ~The work function of the carbon nanotube is a
sumed to be 5 eV.! In the experiment by Saitoet al.,30 the
same amount of current was obtained when 1200 V w
applied on the bundle of singlewall nanotube. The field e
hancement factor (Eloc /V) measured from the F-N plot wa
6.63104 cm21 on average which leads toEloc of 0.79 V/Å,
in good agreement with the above theoretical value.

IV. DISCUSSION

In summary, we have proposed a computational met
suitable for studying the field emission of the nanosize str
tures very accurately. In this scheme, we obtain the poten
and the starting wave functions with the localized basis
first and then calculate the transition rate through the ti
evolution of electrons with the plane wave basis. The loc
ized basis in the first step naturally generates the wave fu
tion confined within the emitter and provides a realistic co
putational scheme for a large number of atoms in the u
cell. The rigorous computation of the currents of individu
states in the present method is rather time consuming~since
we are not employing simplifying schemes such as the W
approximation!, but one needs to consider only a small nu
ber of states near the Fermi level because of the expone
decay of the current as a function of the energy level. T
realistic description of the system on the atomic scale
ables us to study the detailed emission process based o
electronic structure of the emitter. In addition, this meth
allows a precise evaluation of the decay rate of the locali
state. The implementation of the program using parame
given above~energy cutoff, external field, simulation time
etc.! produces stable results for the current between 1021 and
104 nA, covering the practical range of the current fro
nanostructures. If necessary, the computational limit could
easily extended by increasing, say, the accuracy of the b
~i.e., energy cutoff!.

We have also carried out the simulation starting w
wave functions obtained in the absence of external elec
field. ~That is to say, the initial wave functions are exa
eigenstates of the Hamiltonian fort,0.! The Qn(t) after
applying electric field shows an oscillatory behavior but t
rate of decrease on average is almost equal to the one e
ated from the present scheme. This indicates that the tra
tion rate is largely insensitive to the small difference in t
shapes of the wave functions with and without the exter
field. It is better to use the present scheme since the ste
decrease ofQn(t) allows the evaluation of transition rate in
short time period.

It is interesting that the bound-to-continuum transitio
which is the essential part of our calculation, has been wid

s
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studied in semiconductor physics in conjunction with t
dark current of the quantum well under the electric fie
Theoretical methods there include the phase-shift metho31

the complex-energy solution,32 and the stabilization
method.33 They all focus on the calculation of the resonan
width that gives the electron escape rate. Even though th
methods have been limited to the study of one-dimensio
quantum wells, the extended application to nanostructu
may provide results comparable to our method.

In our calculation, the effect of the image charge has
been included. The image potential in nanostructures is
tainly different from that in a simple metal plane. In ou
previous work,34 the image potential was calculated for th
nanotube by considering the electron-density change indu
by an artificial potential of2(1/r ) ~simulating the presence
ve

T

s

W

t.

hy
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of a test electron! outside the tip. It was found that th
screening by electrons in the nanotube gave qualitatively
same image potential but it was in general weaker than
of the classical result for the flat metal plane. This ima
potential will enhance the emission current by reducing
potential barrier inSbar similar to the results of the F-N
theory. A further analysis on this will be reported in the f
ture.
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