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1  Evaluation of the local permittivity 

The local permittivity can be calculated using the orbital-separation approach (OSA) as 

follows. First, the change in the xy-plane-averaged electrostatic potential induced by the 

external bias is calculated:  
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where xL  and yL  are supercell lengths in the directions perpendicular to the interface, 

and );,,(H VzyxV  is the electrostatic potential at position (x, y, z) under an applied bias 

voltage V. )(H zV  shows large atomic-scale oscillations when ionic relaxation is 

considered. Here, we are interested in variations over length scales that correspond to 

interatomic distances, so we apply the macroscopic averaging technique [1] to smoothen 

out such oscillations:  
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where 1l  and 2l  are the lattice periodicities in the metal and dielectric regions.  

From the quantities calculated above, we can also define the local dielectric 

constant. We start from the definition discussed in Ref. [2]:  
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where Ē(z) and P̄(z) are the macroscopically averaged electric field and polarization 

induced by an external field. Also note that the denominator on the right hand side 

equals the induced electric displacement D̄(z). The situation simulated in the OSA does 

not have an external field but an external battery [Fig. S1a], so this expression cannot be 



directly used. However, by considering an analogous system under an external field 

extE  that yields the same amount of surface charge  [Fig. S1b], this expression can be 

applied trivially. In the following, local quantities in this auxiliary system are denoted by 

a prime (e.g., the local induced potential is written as 'HV ) to distinguish from the 

system that is simulated by the OSA. From the Gauss relation in one dimension:  
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we have  
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where )('ind z  is the local charge induced by the external field. Similarly, for the 

polarization, we have  
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so that  
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We can set z = 0 in the vacuum region on the left hand side so that ext)0(' EE   and 

.0)0(' P Thus, by combining Eqs. (S5) and (S7), we find that 

,)(')(')(' ext00 EzPzEzD   that is, the induced electric displacement is 

constant throughout the capacitor. Furthermore, )(' zE is equal to the negative of the 

gradient of the induced potential profile )('H zV  [Eq. (S2)], so that we can rewrite 

Eq. (S3) as  
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In fact, this is the definition that was used in the half-capacitor approach [3]. Next, we 

have to replace the quantities in this auxiliary system by the quantities that can be 

directly calculated by the OSA. If the metal is thick enough to completely screen the 

external field, 0ext /E , where AQ /  is the induced surface free charge per unit 

area. This can be calculated from the differential capacitance [Eq. (3) in the main text] as


V

AdVVC
0

/)( . Also, HV  calculated by OSA [Eq. (S2)] and H'V  are identical 

between the centers of the electrodes. Summing up the above, we can calculate the local 

dielectric constant in the region between the centers of the two electrodes as  
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For nonlinear dielectrics, it is sometimes more appropriate to examine the 

differential permittivity defined as  
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After similar discussion as above, we obtain  
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where we have used the applied bias V as the independent variable that is controlled in 

our simulation. This is naturally related to the differential capacitance as  
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where Lz  and Rz  correspond to the centers of the two electrodes. 

  



  

Figure S1: Schematic of the induced potential and charges in an OSA simulation (a) and 

the corresponding auxiliary system under an external electric field extE  (b).  

represents induced free charges in the metal, while i  and b  represent induced 

polarization charges inside the dielectric in the interfacial and bulk regions, respectively. 

The potential and charge profiles of the two systems are identical in the region between 

the centers of the two electrodes. Although discrete charges are depicted here, the 

discussion in the text applies to continuous variations in the induced charge.  



2  The depolarizing field and the dead layer effect 

In the following, we try to clarify the relationship between the depolarizing field and the 

dead layer capacitance in terms of the total energy landscape based on 

Landau-Devonshire theory. The following discussion is restricted to a parallel-plate 

capacitor with two electrodes, whose structure is periodic in the in-plane directions. 

We start from the phenomenological Landau-Devonshire theory description of the 

electric energy density (energy per unit volume) u:  
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Here, D is the component of the electric displacement vector D perpendicular to the 

electrode plates. A ferroelectric material is characterized by a double-well potential, so 

2A  is negative, the highest order coefficient is positive, and 0A  is an arbitrary 

reference energy. On the other hand, for a perfectly linear dielectric, 2A  is positive and 

higher coefficients are zero. If the dielectric is sandwiched by perfect conductors with 

the same work function and if interface/surface effects are negligible, the inverse 

capacitance per unit area at fixed D is simply given as the curvature of the electric 

energy per unit area vs D:  
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where DEl  is the dielectric film thickness. Here, we have defined the bulk inverse 

capacitance per unit volume )(122/)( 42

42
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, which 

actually equals the inverse of the dielectric permittivity )(1 D . This quantity is 

independent of D for a linear dielectric, while it depends on D for nonlinear dielectrics 

including ferroelectric materials. If the electrodes have different work functions, a term 



linear in D also appears, but we will not consider that here. For a ferroelectric, this value 

1

FE


  is negative at D = 0, meaning that it is unstable towards ferroelectric distortion. 

Once the distortion occurs, 
1

FE


  becomes positive.  

We now consider a capacitor where a dielectric material is sandwiched by non-ideal 

but identical electrodes giving rise to a depolarizing field depE . The effect of the 

depolarizing field is to generate a restoring force that is roughly proportional to the 

polarization P. In the harmonic limit, this causes a positive energy contribution that is 

proportional to PEdep  and thus 2D :  
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The total energy per unit area can be written as  
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and the inverse capacitance is thus  
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The stationary (short-circuit) value of D can be obtained from  
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These equations show that the depolarizing field can be regarded as giving rise to an 

extra interfacial capacitance density -1

iC  that is connected in series with the bulk 

capacitance. In terms of the local permittivity, this appears as an interfacial dead layer 

having a degraded dielectric constant. Although we’ve considered the depolarizing field 

as the source of the interface effect here, it should be pointed out that in the harmonic 

limit, all conceivable chemical and electronic effects at the interface can be represented 



in this manner. We also note that there is a report of iC  being negative at certain 

interfaces [4].  

Now, if we consider a ferroelectric, we find that the total inverse capacitance can 

become positive at D = 0 if 02)0( 1-

iFE

-1

FE  ClC . This leads to the following expression 

of the critical thickness for monodomain ferroelectricity [4]:  
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When the ferroelectric film sandwiched by metal electrodes is thinner than critl , the 

monodomain ferroelectricity is suppressed. If we consider a ferroelectric/paraelectric 

capacitor, then we naturally end up with the following expression:  
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where the last term is the summation over all interfaces in the capacitor heterostructure. 

If 1C  is positive at D 0, the ferroelectric is stabilized in the negative capacitance 

state and provides capacitance enhancement over the paraelectric capacitor. Of course, 

the situation is actually not so simple since ferroelectrics tend to form striped domains as 

discussed in the main text. 

 

3  The effect of the local density approximation on the obtained dielectric 

properties 

As noted in the main text, our simulations are performed at zero temperature, but the 

results have implications for operating temperatures as discussed in the following. STO 

undergoes a phase transition from cubic to tetragonal antiferrodistortive phase as it is 

cooled below 105 K, and is extremely close to a ferroelectric transition near 0 K. This 



transition is barely suppressed by quantum fluctuations of the ions, and thus STO is 

known as a ‘quantum paraelectric’ [5]. However, because the local density 

approximation (LDA) employed in this work (see methods section) underestimates the 

lattice constant and tends to slightly suppress ferroelectricity, the zero-temperature LDA 

system actually mimics the near-room temperature dielectric response of cubic STO [6]. 

To check whether the situation is similar for the c-axis dielectric response of BTO, we 

performed a density functional perturbation theory (DFPT) [7] calculation on tetragonal 

BTO with lattice parameters obtained using LDA (a = 3.943 Å, c = 3.993 Å). We 

obtained a c-axis dielectric constant of 39, which is not too far off from the value 56 

obtained experimentally [8]. Therefore, although we are performing simulations at 0 K, 

we can infer from the results a picture of the dielectric behavior near room temperature.  
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