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Prediction of the stable crystal structure for multinary (ternary or higher) compounds with unexplored
compositions demands fast and accurate evaluation of free energies in exploring the vast configurational space.
The machine-learning potential such as the neural network potential (NNP) is poised to meet this requirement but
a dearth of information on the crystal structure poses a challenge in choosing training sets. Herein we propose
constructing the training set from density functional theory (DFT)-based dynamical trajectories of liquid and
quenched amorphous phases, which does not require any preceding information on material structures except
for the chemical composition. To demonstrate suitability of the trained NNP in the crystal structure prediction,
we compare NNP and DFT energies for Ba, AgSi;, Mg,SiOy, LiAlICly, and InTe,OsF over experimental phases
as well as low-energy crystal structures that are generated theoretically. For every material, we find strong
correlations between DFT and NNP energies, ensuring that the NNPs can properly rank energies among low-
energy crystalline structures. We also find that the evolutionary search using the NNPs can identify low-energy
metastable phases more efficiently than the DFT-based approach. By proposing a way to developing reliable
machine-learning potentials for the crystal structure prediction, this work paves the way to identifying unexplored

Training machine-learning potentials for crystal structure prediction using disordered structures
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multinary phases efficiently.
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I. INTRODUCTION

Crystal structure prediction (CSP) for a given chemical
composition is among the grand challenges in condensed
matter physics [1]. The goal of CSP is to identify atomic
arrangements in space that produce the lowest free energy
under given thermodynamic conditions. Mathematically, this
is equivalent to the global optimization in a high-dimensional
space, to which there is no general solution [2]. Nevertheless,
various heuristic methods have been developed for navigating
the gigantic configurational space efficiently and intelligently
such as random structure sampling [3,4], simulated annealing
[5], particle-swarm optimization [6,7], minima hopping [8],
basin hopping [9], metadynamics [10], and evolutionary algo-
rithm [11]. In evaluating the objective function or free energy,
the method of choice is first-principles calculations based on
the density functional theory (DFT). The nonempirical nature
of DFT allows for exploration of the energy landscape with
few restrictions, yet achievement of high precisions. DFT-
based CSP has been successfully applied to the identification
of structures of organic crystals, superconducting materials,
and inorganic crystals under extreme conditions [12—15].

One intriguing field for application of CSP is the structure
prediction of ternary or higher (simply multinary hereafter)
inorganic crystals under ambient conditions. Its importance
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arises from the low throughput of crystal synthesis: while
structures of most unary and binary compounds were thor-
oughly investigated by x-ray crystallography, only about 16%
and 0.6% have been revealed within the ternary and qua-
ternary spaces, respectively [16]. In the Inorganic Crystal
Structure Database (ICSD) [17], which collects most of the
synthesized inorganic crystals, new entries accumulate at a
pace of 5700 per year (averaged over years 2015-2019).
Therefore, it may take at least several decades of strenu-
ous experimental endeavors to uncover a large portion of
ternary or quaternary domains in the structure database. Con-
sidering that major technological advances were achieved by
multinary systems such as CuAlO, [18], InGaZnO,4 [19],
Culn,Ga;_,Se; [20], and Li;¢GeP,S;, [21], rapid knowledge
expansion on multinary compounds via efficient and reliable
CSP, followed by theoretical investigations on their proper-
ties, may expedite the discovery of novel materials from the
uncharted chemical space.

There have been several theoretical attempts to identify the
stable structures of unknown ternary systems [14,15,22-40].
However, previous works often limited the configurational
space by referring to available prototypes or fixing the
number of atoms in the unit cell. The main reason for
the restrictive searching is the sheer computational cost of
DFT calculations. To predict the equilibrium structure of
multinary crystals from exhaustive searching, a significant
increase in possible atomic arrangements from permutations
among different species demands evaluation of the objective
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function far more efficiently than DFT. The classical potential
is computationally cheap, which allowed for prediction of
stable structures of even quinary compounds [41]. However,
the scarcity and low fidelity of classical potentials prohibit
widespread use as an objective function. Recently, machine-
learning potentials (MLPs) are receiving much attention, as
they deliver the accuracy of DFT yet are faster than DFT by
more than a thousandfold. (Exploiting the locality of quantum
systems, the MLP is a variant of the order-N method for
DFT calculations, which is realized by atomic energies [42].)
Therefore, the MLP is poised to meet the requirement for
evaluating energies in multinary CSP. Indeed, recent works
have pursued this direction [43—46].

The development style of the MLP invokes a distinct chal-
lenge when applying the MLP to CSP for unknown multinary
compounds. That is, the MLP infers total energies after learn-
ing of DFT results for reference structures. In usual practices,
MLPs are first trained over structures derived from known
crystals. However, such information is not available at the out-
set in CSP for unknown compounds, and one should construct
MLPs out of ‘nothing’. To cope with this hurdle, in Refs.
[43—45], structures from the random search or evolutionary
algorithm were used to generate and update MLPs for unary
systems of B, C, and Na, whenever prediction uncertainties
are large for the structures (meaning that they are yet to be
learned). However, these approaches might be less effective
for multinary compounds because they unnecessarily sam-
ple high-energy structures that violate chemical rules from
mutation (genetic algorithm) or random distribution (random
structure search).

Motivated by the above discussions, we herein propose
a way to construct an MLP as a hi-fidelity surrogate model
of DFT, mainly targeting prediction of the most stable struc-
ture of multinary inorganic crystals under ambient conditions.
The key strategy is to train an MLP over disordered struc-
tures such as liquid and melt-quenched amorphous phases.
With only compositional information, molecular dynamics
(MD) simulation of liquids can self-start from a random
distribution and quickly equilibrates at sufficiently high tem-
peratures (well above melting points), which are then cooled
to amorphous structures. Thus, it is feasible to build the
whole training set without previous knowledge of the crystal
structure. Furthermore, short-range orders in the amorphous
phase resemble those in the crystalline phase (for example,
consider amorphous Si and SiO;), and local fluctuations in
liquid and amorphous phases also sample diverse local or-
ders that can appear in crystals. Therefore, it is anticipated
that the trained MLP provides correct energies for stable
as well as metastable phases, thus properly ranking ener-
gies of various structures emerging from search algorithms.
We note that in Ref. [46], amorphous and liquid structures
of C were used in training an MLP which could in turn
identify metastable phases for C. However, application to
finding the crystal structure of multinary systems has not been
attempted as far as we are aware. As a machine-learning
model, we adopt the Behler-Parrinello-type neural network
potential (NNP) [47]. However, the present method is also
compatible with other MLPs. For test materials, we select
Ba,AgSi;, Mg,Si0y4, LiAICl,, and InTe,OsF whose experi-
mental structures are available at the ICSD. These compounds

also encompass diverse chemical bonding and structural
motifs.

The main objective of this article is to benchmark NNPs
trained over disordered structures as a surrogate model of
DFT in structure searching. To this end, we compare energies
between DFT and NNP for stable and metastable structures. A
strong correlation may indicate that the trained NNP can prop-
erly rank diverse structures explored by the CSP algorithm.
To collect a large pool of metastable structures, we utilize an
evolutionary algorithm in combination with DFT calculations,
which is a favored approach in CSP [11]. Then, we compare
NNP and DFT energies for each compound over experimental
phases in the ICSD as well as low-energy metastable struc-
tures that emerge from the evolutionary algorithm. For every
material, we find strong correlations between DFT and NNP
energies, confirming that the NNPs can accurately prioritize
structures in the order of the total energy. Interestingly, NNPs
consistently predict that an experimental structure is the most
stable. By combining the evolutionary algorithm with the
trained NNP, we also search the stable structure for the test
compounds. The method finds the stable phase for LiAICly
and metastable structures for other compounds with energies
higher than for the stable phases by 11.5-41.2 meV /atom, and
they are obtained more efficiently compared to the DFT-based
approach. The rest of the paper is organized as follows: in
Sec. II we explain computational methods used in the present
work. The main results are discussed in Sec. III, and Sec. IV
summarizes and concludes this work.

II. COMPUTATIONAL METHODS
A. Construction of training set

To generate training structures for NNPs to be used in CSP,
we carry out first-principles molecular dynamics (FPMD)
simulations on the melt-quench-annealing process for each
material. All DFT calculations in the present work are per-
formed with the Vienna Ab initio Simulation Package (VASP)
[48] and the Perdew-Burke-Ernzerhof (PBE) functional is
used for the exchange-correlation energy of electrons [49].
The cutoff energies and the k-point meshes for FPMD simula-
tions are determined by the convergence test on a superheated
structure at 4000 K (see below) such that the energy, pressure,
and maximum atomic force converge within 20 meV/atom,
10 kbar, and 0.3 eV/A, respectively. As a result, 250-, 450-,
300-, and 500-eV cutoff energies are chosen for Ba, AgSis,
Mg,Si0y4, LiAIClL, and InTe,OsF, respectively, and the I
point is used in the Brillouin zone integration for all the
materials.

We first determine the melting temperature (7;,) and sim-
ulation volume as follows: the initial structure is prepared by
randomly distributing ~100 atoms for the given stoichiom-
etry, which is then superheated at 4000 K for 5 ps. Next,
we perform FPMD simulations by lowering the temperature
gradually and select an ad hoc T,, as the lowest temperature
at which the mean square displacement of atoms linearly in-
creases with time. The determined 7,,’s are 1500, 3500, 1500,
and 2000 K for Ba; AgSi;, Mg, Si0O4, LiAlICly, and InTe,OsF,
respectively. (The experimental T,,’s are 2174 K [50] and
419 K [51] for Mg,SiO4 and LiAlCly, respectively.) The cell
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volume is then adjusted such that the average hydrostatic pres-
sure is equal to 0. Using the obtained 7}, and cell parameters,
we generate liquid-phase trajectories for 20 ps in the NVT
condition. Subsequently, the liquid is quenched at a cooling
rate of 100 K/ps from 7, to 300 K and then annealed at
500 K for 15 ps to sample amorphous structures. The training
set samples the whole melt-quench-annealing trajectory every
20 fs and consists of 2400-3200 structures.

In the above, the computational parameters were de-
termined by testing convergence for superheated liquid
structures. When 30 snapshots sampled from the training set
of each material were tested, the same computational settings
resulted in mean absolute errors below 4 meV/atom and
0.12 eV/A for the total energy and atomic forces, respectively,
which provide sufficient accuracy as training data. (The refer-
ence data are obtained with 3x3x3 k-point sampling and a
cutoff energy of 700 eV.)

B. Training NNPs

For training NNPs, we use the SIMPLE-NN package [52],
which utilizes Google Tensorflow for training and LAMMPS
[53] for MD simulations. The package has been applied
to studying amorphous phases of GeTe [54] and the Ni-
silicidation process [55]. As an input descriptor, we employ
Behler-Parrinello-type atom-centered symmetry function vec-
tors (G) G? and G* for radial and angular distributions,
respectively, following the definition in Ref. [56]. For each
pair of atomic species, 8 radial and 18 angular components are
used with a cutoff radius of 6 A, resulting in 132 input layers
for ternary materials and 212 for quaternary material. The
network architectures are 132-30-30-1 and 212-30-30-1 for
ternary and quaternary compounds, respectively. The output
layer provides an atomic energy [E,(G;)] for an atom i in the
given structure, and the atomic energies add up to the total en-
ergy (Et) of the structure. The input vectors are decorrelated
by principal component analysis (PCA) and then whitened,
which significantly increases the learning speed [54]. We train
NNPs by minimizing the loss function, which is the sum of
mean square errors for energy, force, and stress. The weight
parameters in NNPs are updated in a minibatch style with a
momentum-based Adam optimizer [57]. We also include an
L2 regularization term in the loss function to avoid overfitting
and allocate 10% of the training set to the validation set. The
optimization is performed until the root mean square errors
of the validation set become smaller than 10 meV/atom,
0.2 eV/A (0.4 eV/A for InTe,OsF), and 10 kbar for the
energy, force, and stress components, respectively. We also
confirm that the number of reference structures in the training
set is sufficient by checking the convergence of the validation
error with respect to the training set size (not shown).

C. Crystal structure prediction by genetic algorithm

To sample metastable structures for each material, CSP
is performed by an evolutionary algorithm implemented in
the Universal Structure Predictor: Evolutionary Xtallography
(USPEX) package [58], while the energy evaluation is carried
out by DFT calculations with VASP. We fix the number of
formula units (Z) to that of the stable structure (4 for every

material). We set the population size to 20-60, which in-
creases with the number of atoms in the unit cell. Initial
structures are generated by either random symmetric [59]
or topological structure generators [60]. The succeeding
structures are produced by both random generators and
evolutionary operators, including heredity, permutation, soft
mutation, and lattice mutation. The ratio of variation operators
in USPEX is set automatically, encouraging the operators to
produce more diverse structures in the low-energy spectrum
[60]. The generated structures are fully relaxed (both atomic
positions and lattice vectors) until atomic forces and total
stress become less than 0.1 eV/A and 20 kbar, respectively,
or the number of relaxation steps reaches 400. In addition, we
turn on the antiseed option, which prevents the evolution from
being trapped in local minima by adding repulsive Gaussian
potentials for sampled structures [61]. We collect metastable
structures generated during the whole evolution and use them
in benchmarking NNPs. For accurate evaluation of energies,
the metastable structures are further relaxed by DFT calcula-
tions until atomic forces and stresses are less than 0.02 eV/A
and 4 kbar. USPEX is also used in predicting stable structures
within NNPs by interfacing with LAMMPS. (See Sec. IIIC.)

III. RESULTS AND DISCUSSION
A. Test materials

For test materials, we chose four compounds (three
ternary and one quaternary) from the ICSD: Ba;AgSis
(Fddd), Mg,Si04 (Pnma), LiAlCly (Pmn2,), and InTe,OsF
(C222;). (See Fig. 1.) These four materials encompass di-
verse structural motifs such as layers, intercalations, and
shared polyhedra. We intentionally chose materials with low
symmetries (rather than simple systems with high symme-
try such as SrTiOj3) to stress-test the proposed approach.
These materials are employed in a variety of applications
owing to their mechanical, electrical, and optical properties:
Ba;AgSi; is a member of the Ba-Ag-Si system, which is
anticipated for potential high-7. superconductors [62] and
has a layered structure formed by Si¢ [63]. Mg,SiO4 (also
known as forsterite) features a high fracture toughness and is
actively studied as bioceramic implants [64]. It has a shared-
polyhedra structure, with Mg and Si occupying octahedral
and tetrahedral sites, respectively. There are also three ad-
ditional structures of Mg,SiO, available in the ICSD, with
the space groups Ibmm, Fd3m, and Cmc2;. LiAICl4 is an
archetypal halide solid-state Li-ion conductor [65]. After alio-
valent doping, LiAICly exhibits high Li-ion conductivities,
which could be used as electrolytes in all-solid-state batteries
[66,67]. There are two structures of LiAlCl, in the ICSD,
with space groups P2;/c and Pmn2;. Among them, we find
that the Pmn2; structure has a slightly lower DFT energy
at 0 K [68]. LiAICly has a relatively simple structure where
both Li and Al ions are tetrahedrally coordinated by Cl ions.
Finally, InTe,OsF is anticipated for nonlinear optical appli-
cations owing to a noncentrosymmetric structure [69]. The
In ions occupy octahedral sites surrounded by four O and
two F ions. The theoretical bandgaps calculated within the
hybrid functional [70] are 0.25, 6.70, 7.17, and 4.71 eV for
Ba;AgSi;, Mg,SiOy, LiAlICl4, and InTe, OsF, respectively.
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B. Comparison of NNP and DFT energies
for metastable structures

To judge the suitability of the developed NNPs for multi-
nary CSP, we compare NNP and DFT energies for metastable
structures collected by USPEX (see Sec. IIC) as well as
experimental structures in the ICSD (relaxed within PBE).
During 10-20 generations, USPEX garnered on average 274
metastable structures with energies relative to that of the
stable phase (AEy,) less than 500 meV/atom. The lowest
AE’s are 46.5, 28.2, 1.9, and 33.2 meV /atom for Ba; AgSis;,
Mg, SiOy, LiAICly, and InTe,OsF, respectively. (The package
could not identify experimental structures.) We note that many
metastable structures share similar atomic configurations such
that slight shifts of a few atoms relax one metastable structure
to another.

Using NNPs trained over disordered structures (see
Sec. II B), we evaluate energies for metastable structures with-
out further relaxations and compare them with DFT energies
in Fig. 2. It is seen that the NNP and DFT energies are
highly correlated, and Pearson coefficients among the struc-
tures with AEDFT < 200 meV /atom are 0.769, 0.864, 0.977,
and 0.962 for BayAgSi;, Mg,Si04, LiAlICly, and InTe,OsF,
respectively. This is striking because none of the metastable
structures were explicitly included in the training set. Thus, it
is confirmed that the training set could sample the structural
motifs appearing in low-energy metastable phases. It is also
intriguing in Fig. 2 that the NNPs consistently predict the

0.0 0.1 02 0.3 0.4 0.5
AEDET (eV/atom)

o ICSD|

0.0 0.1 02 0.3 0.4 0.5
AEDET (eV/atom)

o USPEX

FIG. 2. Correlation between DFT and NNP energies. Structures
are fixed to metastable structures from USPEX (blue circles) or
experimental structures from the ICSD that are relaxed by DFT
(red squares). For both AENNP and AEDFT, the reference energy
is the DFT energy of the stable phase. Experimental structures are
plotted as red squares. (a) Ba,AgSi;, (b) Mg,SiOy, (c) LiAICl,, and

(d) InTe,OsF.

most stable experimental structure to be more stable than any
theoretical structures (see red squares). This is the case even
if the structures are relaxed using the NNPs.

Each disordered structure in the training set consists of var-
ious local configurations that are similar to structural motifs
in metastable phases. The strong energy correlations in Fig. 2
suggest that the machine-learning procedure successfully de-
lineated local energies without ad hoc energy mapping [42].

In Fig. 2, RMSEs of NNP energies with respect to DFT en-
ergies are 27.4, 29.6, 10.7, and 63.7 meV /atom for Ba; AgSi;,
Mg,SiO4, LiAICls, and InTe,OsF, respectively (averaged
over structures within 200 meV /atom). These are larger than
training errors, which is understandable because local orders
in disordered structures do not exactly match with those of
crystalline phases. Nevertheless, the trained NNPs can still
serve as a surrogate model because candidate structures are
recalculated by DFT (see the next subsection).

In Fig. 2, it is also shown that the errors of NNP predic-
tion increase with AE,. This might be because structural
features in high-energy phases (>200 meV/atom) were not
sufficiently sampled in the entropy-driven liquid or amor-
phous structures. (The AEy, of the amorphous structure is
60-180 meV/atom.) The systematic upward deviation can
be explained because structures are relaxed by DFT, which
slightly deviate from the equilibrium positions given by
NNPs. When the structures are relaxed by NNPs, the same
plots show downward deviations (not shown).
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FIG. 3. The distribution of G vectors in Ba, AgSi; projected onto
the first two principal-component axes (PC1 and PC2). The distribu-
tion of (a) Ba atoms, (b) Ag atoms, and (c) Si atoms. The projected
density on each axis is plotted at the top and side.

In Fig. 2(a), we note that the energy scale is not well
resolved for low-energy structures of Ba;AgSi;. For in-
stance, AE,; for the third lowest metastable structure is
93 meV/atom in DFT but it is only 14 meV/atom in the
NNP. This is attributed to deficiencies in the training set: in
the disordered phases, we find that the hexagonal Si ring in
the crystalline structure [see Fig. 1(a)] is absent and linear
Si chains embedded with Ag atoms are prevalent. Since the
low-energy structures mainly differ in the connection topol-
ogy of Si chains, the energy prediction in this region becomes
rather inaccurate. This sampling problem is caused by the high
cooling rate of 100 K/ps, which may not provide enough time
to establish medium-range orders such as hexagonal rings.

In Fig. 3, using PCA, we examine element-by-element
distributions of G vectors in the training set and (meta)stable
structures of BayAgSi;. It is seen that most G points from
USPEX-generated and experimental structures lie within
those from the training set. (Analysis of other principal axes
shows similar relationships.) Other materials also exhibit G-
point distributions similar to that of Ba;AgSi;. (The only
exception is Al in LiAICly, where Al atoms from high-
energy metastable structures are distinct from the training
set.) Therefore, we explicitly confirm that the local motifs
of USPEX-generated structures and ICSD structures are well
included in the region spanned by the training set.

C. Prediction of crystal structures combining USPEX and NNPs

Given that the NNPs trained over disordered phases are
suitable as a hi-fidelity model in CSP, we try to search the
stable phase for the test compounds by interfacing USPEX
with LAMMPS and SIMPLE-NN. The computational param-
eters in USPEX are the same as those in Sec. II C except that
the evolution extends to 120 generations. This is much longer
than the 10-20 generations in the DFT-based approach (see
Sec. II C) but the total computational time is shorter owing to

(a) Ba,AgSi, (b)

Mg,SiO,

PBa VAg @Si PdMg @si @0
(©) LIAICI, (d)  InTe,OF

‘/o
|2

@n @Te 00 oF

JLi @ A @Cl

FIG. 4. The lowest-energy structures of (a) BayAgSis,
(b) Mg,SiOy, (c) LiAICl, and (d) InTe,OsF found by USPEX in
combination with NNP. (c) Same as Fig. 1(c).

the fast evaluation by NNPs. After 120 generations, USPEX
suggests 10-20 candidate structures with the lowest energies.
By utilizing AMP? [71], an automation script for operating
VASP, we relax these structures until all the atomic forces and
stress components are less than 0.02 eV /A and 4 kbar, thereby
obtaining accurate DFT energies.

Despite the larger number of generations compared to
previous studies (mostly binary compounds) [61,72,73], the
evolutionary algorithm identifies the most stable phase only
for LiAlCl; and fails for the other three materials. This
may indirectly reflect complicated configuration spaces for
multinary compounds. Figure 4 shows the structures with the
lowest AE, values (41.2, 27.7, 0, and 11.5 meV/atom for
Ba,AgSi;, Mg,SiO,4, LiAICl;, and InTe,OsF, respectively).
While the local structures of three metastable phases look
similar to those in the stable phase (see Fig. 1), there are
also distinct differences; Ba,AgSi; in Fig. 4(a) consists of
only mixed Si-Ag rings without the pure Si rings in Fig. 1(a).
On the other hand, Mg,SiO, in Fig. 4(b) comprises corner-
sharing tetrahedral Mg and Si atoms, while the stable phase in
Fig. 1(b) is characterized by edge-sharing octahedral Mg and
tetrahedral Si atoms. (The corner-sharing structures were also
obtained by DFT-based USPEX in the previous subsection.)
Nevertheless, the NNP energy of the stable phase is close to
that of DFT, which implies that more aggressive mutations are
needed to create and stabilize the octahedral configuration of
Mg during evolution. In the case of InTe,OsF, although both
the experimental and the theoretical structures have threefold
Te and twofold O, substantial differences are observed for In
octahedra. The octahedra in Fig. 1(d) are corner-shared with
each other through F atoms, resulting in twofold F. However,
the metastable structure in Fig. 4(d) features edge-sharing and
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FIG.5. A EPFT vs AENNP for Ba,AgSi; with structures in
Fig. 2(a) after augmentation of the training set with metastable struc-
tures from USPEX-NNP.

singly coordinated F atoms. In spite of the significant differ-
ence in the short-range order, AEy is only 11.5 meV /atom.
This suggests that quaternary InTe,OsF has a rugged energy
landscape where the configurational similarity weakly corre-
lates with the energy.

In comparison with the DFT-based method, we find that
some aspects of the evolutionary algorithm work differently
because of characteristics of NNPs. For instance, random and
mutated structures often relax to unphysical structures by
NNPs because they possess short bonds that are not in the
training set. In contrast, the DFT method can automatically
adjust bond lengths. We believe that additional short-range
repulsive potentials can relax those structures to reasonable
ones that can be utilized by the evolutionary algorithm.

The metastable structures obtained from the evolutionary
algorithm coupled with NNPs can also be used for updat-
ing NNPs. For instance, we add 22 candidate structures of
Ba,AgSi; to the training set and generate another NNP. [We
recall that these are not structures in Fig. 2(a).] In detail,
we include the relaxation trajectories when DFT is applied
to the candidate structures and energy curves along elastic
deformations (shear, uniaxial, and hydrostatic types). After
training, we recalculate NNP energies for metastable struc-
tures used in Fig. 2(a). The result in Fig. 5 shows that energy
resolution for the low-energy region is significantly improved
in comparison with Fig. 2(a), which is a result of hexagonal
Si-Ag rings added to the training set. The Pearson coeffi-
cient for low-energy structures increases from 0.769 to 0.828.
Notably, the AE, for the third lowest metastable structure
is 104 meV/atom in the NNP, which is comparable to the
93 meV/atom in DFT. Such refinement of the energy res-
olution should help identify the stable phase more quickly.
One can also improve NNPs through iterative training. For
example, we perform a melt-quench simulation of Ba;AgSi,
using the NNP and retrain the NNP by adding trajectories of
amorphous phases to the training set. We then find that the
energy correlation improves similarly to that shown in Fig. 5.

So far, we have assumed that Z (the number of formula
units in the unit cell) is known for the target compounds. This
is not the case in dealing with a truly unknown compound and
various Z values should be tested separately. (We find that Z
values for most inorganic crystals are 1, 2, or 4.) Utilizing

NNPs is advantageous for increasing the Z number because of
order-N scaling, which is much more favorable than order-N 3
scaling with DFT.

D. Computational efficiency

We remark on the computational efficiency of the present
approach. The main computational cost of this work comes
from generating the training set, which requires tens of thou-
sands of supercell calculations for MD. However, during MD
simulations, wave functions extrapolate well, which signif-
icantly shortens self-consistent loops. As a computational
hardware, we employed clusters of Intel Xeon Phi 7250,
1.4 GHz (68 cores per CPU). CPU times spent over one
generation are 2072 (69 564) and 11 532 (244 646) s/CPU
for LiAICl4 and InTe,OsF, respectively, when the NNP (DFT)
is used. Using 4-CPU (8-CPU) cluster computers for ternary
(quaternary) compounds, it took a couple of days of computer
time to obtain the whole training set and a half-day for training
and 1 day for USPEX to complete 120 generations with the
NNP. With the same computational resource and the total time
span (3—4 days), the DFT-based USPEX could finish about
10-20 generations.

As mentioned above, the multinary CSP would require
generations significantly longer than 100. For instance, in
evolving over 1000 generations, the NNP-based USPEX
would be faster than the DFT-based one by up to 30 times.
Furthermore, in evaluation of the energy and force of a sin-
gle structure in the present study, the NNP takes 1x107™* to
3x10™* CPU s/atom, while DFT takes 1x10~! to 5x10~!
CPU s/atom. Thus, the ~103 speed gain by the NNP did not
translate into the acceleration in the present structure search
by USPEX. This could be improved by tuning the parameters
in USPEX and adjusting the program interfacing between
USPEX and LAMMPS. By optimizing the supercell size and
melt-quench protocols, it would also be possible to reduce the
computational time to construct the training set significantly.

IV. SUMMARY AND CONCLUSIONS

In summary, we proposed a way to train NNPs using disor-
dered structures sampled from liquid-quench-annealing MD
trajectories. By the strong correlations of NNP and DFT en-
ergies among diverse metastable structures, it was confirmed
that the NNPs can properly rank the energies of structures
that emerge from search algorithms. The CSP using the NNPs
could identify low-energy metastable crystal structures more
efficiently compared to the DFT-based approach. The short-
range orders were established rather quickly but it seems to
take much longer generations to arrive at correct medium-
range orders. The fast energy evaluation by the NNP would be
advantageous for identifying medium-range orders of multi-
nary crystals from extended generations. We note that the
present approach is equally applicable to unary and binary
systems, although DFT-based search methods can identify
equilibrium structures efficiently for low-order compounds, as
shown in numerous reports in the literature. In conclusion, by
proposing a way to develop machine-learning potentials for
CSP, this work will pave the way to identifying unexplored
multinary phases efficiently.
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