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We report improved results of atomistic modeling of V-Fe alloys. We introduced an electronic structure
embedding approach to improve the description of the point defects in first-principles calculations, by includ-
ing the semicore electrons in some V atoms (those near the interstitial where the semicore levels are broad-
ened) but not those further from the point defect. This enables us to combine good accuracy for the defect
within large supercells and to expand the data set of first-principles point defect calculations in vanadium with
and without small amounts of iron. Based on these data, previous first-principles work, and new calculations on
the alloy liquid, we fitted an interatomic potential for the V-Fe system which describes the important configu-
rations likely to arise when such alloys are exposed to radiation. This potential is in a form suitable for
molecular dynamics (MD) simulations of large systems. Using the potential, we have calculated the migration
barriers of vacancies in the presence of iron, showing that these are broadly similar. On the other hand, MD
simulations show that V self-diffusion at high temperatures and Fe diffusion are greatly enhanced by the

presence of interstitials.
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I. INTRODUCTION

Future fusion reactors will require advanced materials to
cope with high temperatures, neutron irradiation, and contact
with liquid lithium. Although long industrial experience with
steel makes it the current material of choice, the costs of
replacing fusion reactor components makes longer-lived ma-
terials especially attractive as structural blanket materials.
Vanadium-based alloys'~!3 such as VCrTi are an attractive
possibility on account of their good high-temperature
strength and absence of radioactive products in a 14 MeV
neutron flux. Swelling of materials, from void or vacancy
trapping in the bulk, is one of the limiting features in such
radiation environments, and one of the largest swelling ma-
terials reported is V-Fe.'*~!7 It is of interest to understand
which properties of this material are responsible for the
swelling.

Experience shows that the behavior of pure materials un-
der irradiation can be radically altered by even small quan-
tities of alloying elements. One such dramatic case is that of
iron or chromium which, in small quantities, can radically
increase the rate of swelling of vanadium. Since swelling can
produce large stresses, it is important to identify the mecha-
nisms behind such effects. Molecular dynamics (MD) is the
method of choice for studying damage caused by neutron
irradiation. The strong correlation between atomic size and
vulnerability to swelling in vanadium alloys suggests that
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molecular dynamics provides a reasonable approach for ex-
ploring this mechanism. The relatively short time scale of
damage cascade formation means that following atom trajec-
tories in reasonable simulation time is possible, and the
likely importance of crystal defects advocates for the em-
ployment of an off-lattice simulation method. Reasonable
atomistic simulations require descriptions of the interaction
between atoms that yield reasonable properties for the mate-
rial of interest. Interatomic potentials of the embedded atom
method'® (EAM) or Finnis-Sinclair'® (FS) form are widely
used to describe metals because they provide an excellent
tradeoff between computational speed and accurate repro-
duction of key materials properties. For example, such po-
tentials can accurately describe atomic size, elastic strain, the
effects of change in atomic coordination around vacancies
and interstitials, etc.

We have previously performed first-principles calcula-
tions and constructed interatomic potentials for pure
vanadium? and for pure iron,”! which accurately reproduce
many perfect crystal and crystal defect properties. In general,
defect formation energies can be predicted reliably only by
first-principles methods, and not by the embedded atom
method; however, if these energies are fitted, simulation us-
ing the embedded atom method can give a reliable descrip-
tion of their interactions and assembly into voids or disloca-
tion loops.

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.76.214105

MENDELEV et al.

PHYSICAL REVIEW B 76, 214105 (2007)

TABLE 1. Physical properties of V calculated using FS potentials (The properties used in the fitting procedure are printed in bold.)

Property Target value

Potential from Ref. 20 New potential

a (bee) (A)
E o (bee) (eV/atom)

Cy, (GPa) 229 (Ref. 39)
C,, (GPa) 119 (39)
Cy, (GPa) 43 (Ref. 39)

2.91 (Ref. 40)
2.48 (Ref. 40)

E]V{“C (unrelaxed bcec) (eV/atom)
E}“C (relaxed bee) (eV/atom)
E (bee) (eV/atom)

Ep (bec) (eV/atom) (E}”°+E,Vna°)

3.039 (Ref. 37)
-5.31 (Ref. 38)

3.19 (Ref. 41 and 42)

4.08 (Ref. 41 and 43)

EJ’} (bee (100)) (eV/atom) 3.22 (Ref. 40)

E} (bee (110)) (eV/atom) 3.09 (Ref. 40)

E} (bee (111)) (eV/atom) 2.81 (Ref. 40)
(

2.81 (Ref. 40)
3.27 (Ref. 40)

E} bce crowdion) (eV/atom)
E} (bce octahedral) (eV/atom)

diiopy (A) 2.170 (Ref. 40)
diyigy (A) 2.108 (Ref. 40)
diiny (A) 2.151 (Ref. 40)
a (fee) (A) 3.861 (Ref. 40)
AEpcc g (€V/atom) 0.247 (Ref. 40)
T, (K) 2183 (Ref. 44)

3.030 3.030
-5.300 -5.016
228 228
119 119
4.3 42
291 2.75
2.62 249
0.52 0.78
3.14 3.27

3.540 (Ref. 45) 3.21
3.739 3.09
3.280 2.81
3.300 2.83
4.266 3.24
2.106 2.022
2.186 2.224
2.238 2.192
3.947 3.863
0.158 0.214
2924 3119

In this paper we present further first-principles data on
self-interstitials in V and Fe impurities in V. We also present
a semiempirical potential that reproduces the main first-
principles results. The potential has an analytic many-body
form, making it suitable for application in existing large-
scale MD codes. Using this semiempirical potential, we have
studied vacancy and interstitial diffusion in V in the presence
of Fe impurities.

II. FIRST-PRINCIPLES CALCULATIONS

All first-principles calculations were carried out using the
density functional theory and plane-wave pseudopotential
methods with the exchange-correlation potential described
by the generalized gradient approximation,?> which is re-
quired to get the correct magnetic moment for iron. In all
static simulations the atomic positions were relaxed accord-
ing to the Hellmann-Feynman forces and the unit cell relaxed
according to the stresses. For a consistency check, we have
used both VASP (Ref. 23) and PWSCF (Ref. 24) codes in the
smaller simulations, and, as has been demonstrated previ-
ously, the results agree. The energy cutoff of 40 Ry was used
to expand the plane wave basis. For the conventional unit
cell of V or Fe, 8 X8X8 k-point mesh was used while
equivalent densities were chosen for supercell structures.

We have generated two pseudopotentials for vanadium.?
One includes semicore states (3s3p) as valence electrons,
while the other treats them as part of the frozen core. We
apply the pseudopotential including semicore states to atoms
when the bond length between them is compressed by more

than 10% compared to the bond length in a perfect vanadium
crystal at zero pressure. The improved transferrability of the
semicore pseudopotential ensures the computational accu-
racy, while the high computational cost associated with cal-
culating semicore states is avoided, since relatively few
bonds are sufficiently compressed to meet the 10% compres-
sion condition (e.g., in the vicinity of self-interstitials). For
Fe, the same pseudopotential, including semicore states, is
used throughout.

Since only nonsemicore potentials were used in Ref. 20,
in the present study we recalculated the self-interstitial for-
mation energies in pure V. The new values presented in Table
I are slightly smaller than those reported in Ref. 20 but the
relative differences between intersitital configurations agree
well with previous results (to within 0.05 eV).

We considered several V-Fe compound structures that are
based on the bce structure—V sFe, VFe, VFe 5. We consid-
ered VFe in the CsCl structure. For V,sFe and VFe;s, we
replaced one of the atoms in 2 X2 X 2 bcec supercell with the
counterpart atom. We then calculated the lattice parameters
and formation energies for each of these systems. The results
are presented in Table II.

The vacancy-Fe interaction energy can be defined as

AE,c pe = Ey,[1Fe] + E,[OFe] - E,, [OFe] - E [ 1Fe],
(1)
where E,[nFe] is the energy of a system containing N body-

centered-cubic lattice sites of which n sites are occupied by
Fe atoms, and E,,[nFe] is the energy of a system containing
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TABLE II. The properties of V-Fe alloys obtained from the first-principles calculations and with the new
FS potential. The propertial. The properties used in the fitting procedure are printed in bold. a is the lattice

parameter of the supercell with two or 16 atoms, AEI(._IF

is the interstitial-Fe interaction energy and AE, . p.

(eV) is the vacncy-Fe interaction energy. As we see. the iron is bound to the various interstitials but repelled
by the vacncy. The strong binding of Fe in the (110) mixed interstitial conformation brings it to within

0.07 eV of that of the (111) mixed interstitial.

Property

First principles FS potential

a (V bee) (A)
a (Fe bee) (A)
a (V,sFe) (&)
a (VFe) (A)

a (VFeys)
AENY (ev)

{100y
AE; " (eV)

(111)
AE; L. (eV)

AEvac-Fe (eV)
AE (eV) fi By i Ltre=Ltv, k
V4 —Fe=—
(S or 6 16 el 16 150€
AE (eV) for §V+—Fe=—VFe

AE (eV) f Ly B Lk
(& or 16 +]6 6—16 €5

3.030(Ref.46) 3.030
2.855 2.855
6.005 6.007
2.903 2.968
5.726 5.758
-0.02 -0.03
-0.46 -0.44
-0.23 —0.24
0.16 0.14
—-0.035 -0.041
-0.100 —-0.447
—-0.046 —-0.034

N body-centered-cubic lattice sites, where one site is a va-
cancy and n nearest-neighbor sites of the vacancy are occu-
pied by Fe atoms (all remaining sites are V atoms). In order
to calculate the vacancy-Fe interaction energy we performed
first-principles calculations using simulation cells consisting
of 127 atoms (i.e., 4 X4 X4 supercell with one vacancy),
from which one V atom was replaced by one Fe atom and the
internal coordinates relaxed at fixed supercell shape and vol-
ume.

Next, we studied the mixed interstitial dumbbell configu-
rations in V in the presence of Fe impurities. We used the
following definition for the interaction energy between an
interstitial and Fe impurity:

AE; p.=E[1Fe] + E [OFe] - E[OFe] - E [1Fe], (2)

where E;[nFe] is the energy of a system containing N body-
centered-cubic lattice sites, where one site is occupied by a
dumbbell, one of the atoms of which is replaced by n atoms
of Fe. We have performed first-principles calculations using
simulation cells consisting of 129 atoms and the internal co-
ordinates were relaxed at fixed supercell shape and volume.

III. DEVELOPMENT OF A SEMIEMPIRICAL
POTENTIAL

A. Semiempirical potentials

While first-principles calculations provide an accurate and
fundamental method to obtain the data necessary to describe
the dynamics of defects, they are very computationally ex-
pensive to employ for large simulation cells and/or long
simulation times. Similarly, ab initio molecular dynamics is
restricted to sizes and time scales much smaller than the
cascade events, which are the cause of radiation damage.

Clearly, we can analyze only a very limited set of atomic
configurations with a fully first-principles approach. There-
fore, we follow this strategy: we perform first-principles cal-
culations on an extensive set of atomic configurations and
employ these results in the development of a set of semi-
empirical interatomic potentials that can be used for large-
scale atomistic simulations.

In this work, we develop potentials of the Finnis-Sinclair
form, the parameters of which are fitted to the first-principles
data following the methodology of Refs. 21 and 26. The total
potential energy is written as the sum of two contributions: a
pairwise part and a local density part:

N-1 N N
U=2 2 ¢ilry)+ 2 Di(p), 3)
i=1 j=i+l i=1

where the subscripts i and j label distinct atoms, N is the
number of atoms in the system, r;; is the separation between
atoms i and j,

pi=2 Wiy, @)
J

and ¢#; is the element type of atom i. The binary alloy FS
potential consists of eight functions, six of which can be
determined using properties of the pure components. The
cross functions (¢'? and W'?) should be fitted to alloy prop-
erties. Note that for a single-component system the FS form
coincides with the EAM form, but for a binary alloy, an
EAM potential consists of seven functions, six of which de-
scribes pure components and one is the pairwise cross func-
tion.
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FIG. 1. Vacancy migration energy in V.

B. Semiempirical potential for pure V

A FS potential for pure Fe was developed in Ref. 21 and
improved in Ref. 27. A FS potential for V was developed in
Ref. 20. Some properties calculated with this potential are
presented in Table I in comparison with the target values
obtained from either experiment or first-principles calcula-
tion. This potential provides correct perfect crystal properties
(the first five lines in Table I), and was fitted to the unrelaxed
vacancy formation energy taken from first-principles data.
However, it is the relaxed vacancy formation energy which is
physically important, and this value is overestimated by this
potential. To find the vacancy migration energy, we moni-
tored the energy of the crystal as an atom was translated
from its initial equilibrium position into an empty nearest-
neighbor site (i.e., a vacancy) along a path drawn from the
initial equilibrium position to its final equilibrium position
(the system is relaxed at each step along this path and three
atoms located far away from the migration atoms were fixed
to prevent the whole cell moving). The change of energy
versus distance is shown in Fig. 1. The potential from (Ref.
20) demonstrates rather complex behavior, which is probably
related to the fact that there are several paths (obviously each
point for this potential in Fig. 1 corresponds to one of these
paths chosen by the algorithm). It is interesting that the most
stable atom position in the vicinity of a vacancy is located
0.05 nm from the equilibrium lattice site. This is probably an
unrealistic artifact of the fitted, semiempirical FS potential.
The potential from (Ref. 20) overestimates all self-interstitial
formation energies, which is not surprising since it was fitted
to earlier first-principles data. This potential indicates that
the (111) dumbbell and crowdion are the most stable self-
interstitials, in agreement with the first-principles results, but
the next stable self-interstitial (110) has an energy that is too
large (with respect to first-principles calculations). This is a
potential problem since this can affect self-interstitial kinet-
ics at high temperatures (see Ref. 20 for more detailed dis-
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cussion). The potential also predicts a very high melting tem-
perature (the melting temperature was calculated using the
coexistence method®® with accuracy not worse than 5 K).

While the potential developed in Ref. 20 allowed some
insight to be obtained into the self-interstitial kinetics in V,
before fitting an alloy potential, it behooves us to improve
the initial V potential, focusing on properly reproducing the
expanded point defect formation energy data set obtained
from the present first-principles calculation. In fitting the pre-
vious V potential,?® we determined the potential parameters
by the fitting to the cohesive energy and lattice parameter of
the equilibrium crystalline phase, unrelaxed vacancy forma-
tion, and elastic constants. However, interstitial energies are
also affected by the short-range part of the potential: MD
simulations of interstitials suggest that the atomic separation
near an interstitial can be compressed by 20% relative to that
in the equilibrium perfect crystal. Clearly, we need to include
information about atomic interactions at small atomic sepa-
rations. In fitting the earlier potentials,>"* we found that
using the universal binding energy relation is not appropriate
since it does not properly distinguish between changes in
density and compression of just a few bonds with only a
small change in local density. To address this, we also fitted
the potential to atomic forces in a liquid (where a variety of
interatomic spacings occur), as determined from first-
principles calculations (as originally suggested in Ref. 30).
In addition, we explicitly included in the fitting procedure
the formation energies of five self-interstitials. Since it is the
relaxed formation energies which are important for applica-
tion, the differences between energies of the perfect crystal
and relaxed defect configurations were included in the fitting
procedure.

The parameters for the new potential are presented in
Table III. Table I demonstrates that this potential adequately
describes the main properties of defects in pure V. It is espe-
cially important that it completely reproduces all interstitial
formation energies. It is interesting to note that while the
potential gives poor predictions for the metastable (100) and
(110) dumbbell separations, it gives the correct predictions
for the ground state (111) dumbbell separation (the dumbbell
separation obtained with the FS potential is larger than the
first-principles value by just 2% and the first-principles cal-
culations underestimate the lattice parameter by 1%). The
vacancy migration energy calculated with the new potential,
shown in Fig. 1, appears to be much more reasonable that
obtained using the FS potential from Ref. 20. The sum of the
vacancy formation and migration energies gives the activa-
tion energy for self-diffusion via a vacancy mechanism. As
can be seen from Table I, the new potential predicts the ac-
tivation energy for self-diffusion in good agreement with
low-temperature experimental data. Overall, we conclude
that the new potential provides much more reliable predic-
tions for the point defects in V than the previous V potential
from Ref. 20.

C. Semiempirical potential for dilute solutions of Fe in V

Although potentials for pure ferromagnetic iron and vana-
dium already exist, the interactions between Fe and V in the
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TABLE III. Parameters for the analytical form of the V-Fe potential (Ref. 47).

Function Value Cutoffs

op(r) exp(7.0236650976148+0.38414932172994r 1.0-1.7
—3.9452833628150r%+1.204461299192072)
-25.139133151834 (2.2-r)} 1.7-2.2
+11.836012558032 (2.3-r)3 1.7-2.3
-29.896310633764 (2.4—r)3 1.7-2.4
+11.362782322594 (2.5-r)3 1.7-2.5
—10.181574852650 (2.6—r)3 1.7-2.6
—4.9875503863803 (2.7-r)3 1.7-2.7
+8.6952804860732 (2.8—r)° 1.7-2.8
-13.677500718931 (2.9-r)3 1.7-2.9
+5.6126388727001 (3.0-r)3 1.7-3.0
+0.46488001604193 (3.1—7)° 1.7-3.1
+1.5214055691516 (3.5-r)3 1.7-3.5
+0.46544307855460 (3.9-r)° 1.7-3.9
-0.64131667364153 (4.4—r)3 1.7-4.4
+0.14608881387672 (4.9—r)° 1.7-4.9
+18.850648840669 (2.7—r)* 1.7-2.7

Oyre(r) exp(10.650423553729—-8.6627918551923r 1.0-2.2
+3.4938728452290r%-0.75264873240612+3)
-6.0631883671138 (2.4—r)3 22-2.4
—24.799198823886 (2.5—r)3 2225
+26.907575069393 (2.7-r)3 2.2-2.7
—3.0426755184804 (2.9-r)3 2.2-2.9
+1.8009131178337 (3.3-r)3 22-33
—1.5541857077422 (4.1-r)3 2.2-4.1
-0.025426650046730 (4.5—r)° 22-45
-0.40899382313291 (4.9-7)3 2.2-49
+0.41143636852142 (5.3-7)° 22-53
+49.486816355750 (2.6—r)* 2.2-2.6
—26.949471452396 (2.8—r)* 22-2.8
+0.89607791162728 (3.1-r)* 2.2-3.1
-0.30552738676505 (4.3—r)* 22-43
+0.92215103950722 (4.8—r)* 22-4.8
-0.32653206990036 (5.3-r)* 22-53

Ppere(7) The same as in Ref. 27

Py/(r) 4.7245287530941 (2.4-r)3 0-2.4
+3.3757528926713 (2.5-r)° 0-2.5
-0.84094568228487 (2.6—r)° 0-2.6
+5.0909332213711 (3.2-r)3 0-3.2
+0.70595885229466 (4.0—r)? 0-4.0

Dyre(r) 0.51223781200262 (2.4—r)? 0-2.4
+0.82719475666504 (2.5—r)° 0-2.5
+3.9878638778417 (2.7-r)3 0-2.7
+3.4726303408747 (2.9-r)3 0-2.9
+4.5584613828918 (3.2—r)3 0-3.2
+0.21046804631232 (4.2—7)3 0-4.2

Ypere(T) The same as in Ref. 27

Fy(p) —p®3 —4.0940585433679 X 10* p?+9.7459084965270 000

x 107 p*
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(Continued.)

Function

Value

Cutoffs

Fee(p) The same as in Ref. 27

alloy have not previously been described. In order to con-
struct an interatomic potential to describe interactions be-
tween Fe solutes and point defects in V, two cross functions
¢yre and yp, were developed. The parameters of these
functions were fitted to some of our first-principles data.
Since the goal of this work is to develop a semiempirical
potential for very dilute solutions of Fe in V, we used the
first-principles data (lattice parameter and formation energy)
obtained on a bcc structure where one of 16 V atoms was
replaced by Fe. The interaction energies between Fe and
point defects [see Eqgs. (1) and (2)] were included in the
fitting procedure. Finally, we created a representative liquid
configuration containing 120 V and 30 Fe atoms. The atomic
forces determined for this configuration from the first-
principles calculations were also used in the fitting proce-
dure. In all of these configurations, the local magnetic mo-
ment on the iron atoms was found to be small. The
parameters of the optimized cross-functions are provided in
Table III. Figure 2 shows the effective pair potentials, de-
fined as

ad"
dp

P
+
o ap

et =0 o

)@V”Z(r), )

153
Pg

where the superscripts refer to the atom type and pj is the
value of p for atoms of type 7 in the equilibrium VsFe lattice
at 7=0. This is a mean-field approximation to the EAM,
which can be related to the alloying energy.’!? Since the
V-Fe function is shifted to smaller atomic separations with

2.0 5
o
8 o, V-V
1.6 a, V-Fe
& o, Fe-Fe
A
1.2 %
o]
4
0.8- °
8
—_
C 2
& 0.4 e
e Aag
A RSOCOA8S
0.0 R
A
A
0.4 3
0.8 . . . . : : ’ ; y i
0.10 015 020 025 030 035 040 045 050 055 0.60

r (nm)

FIG. 2. Effective pair potentials.

respect to both V-V and Fe-Fe functions, we conclude that
there is a strong attraction between V and Fe atoms. This is
in agreement with the formation energies of V-Fe alloys be-
ing negative (see Table II). On the other hand, examination
of Table II shows that the potential provides accurate predic-
tions for dilute solutions of Fe in V and, surprisingly, for
small amounts of V in Fe. Information on the latter was not
included in the fitting procedure (one may appropriately have
concerns about transferrability when moving from a para-
magnetic to a ferromagnetic environment). There is a consid-
erable overestimate of the absolute value of the formation
energy of the B2 structure due to the strong nearest-neighbor
attraction.

Examination of Table II shows that the new Fe-V poten-
tial yields very good agreement with most of the first-
principles data on the interaction energy between Fe atoms
and point defects in V. This makes this potential especially
suitable for the simulation of radiation damage in (dilute)
V-Fe alloys.

D. Lattice parameter and bulk modulus

There is considerable scatter in the experimental measure-
ments of the lattice parameter of V-Fe bec alloys (e.g., see
the review in Ref. 33). Nonetheless, it is clear from the ex-
periments that increasing Fe content leads to a decrease in
the V-Fe alloy lattice parameter. Figure 3 shows the data
obtained via analysis of different room-temperature
experiments.33 In order to test our potential, we created

0.306-
o, EAM potential
0.303 8 o, Experiment
0.300 a
[+]
o
. 0.297- o O
g o
\; o o
0.294 - a
[+]
o
[+]
0.291 8 a
[+]
a
[+]
0.288- o
[+]
(=]
0.285 . . g . ;
0.0 0.2 04 0.6 0.8 1.0
XFe

FIG. 3. Lattice parameter as a function of Fe concentration at
room temperature.
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FIG. 4. Bulk modulus as a function of Fe concentration at room
temperature.

model V-Fe alloys at room temperature. First, we took our
model of pure V at T=0 consisting of 5000 atoms and ran-
domly replaced V atoms with Fe to achieve the desired com-
position. Next we heated the alloys up to 7=300 K and
found the pressure as a function of the atomic density (using
NVT molecular dynamics simulations). These calculations
provided both equilibrium lattice parameters and bulk
moduli. As can be seen from Fig. 3, our potential properly
describes the effect of Fe on the lattice parameter at low Fe
concentration. The deviation from the experimental data at
Xge=0.5 is more pronounced.

The dependence of the bulk modulus on the Fe concen-
tration is shown in Fig. 4. It is interesting that introduction of
small quantities of Fe into V or V into Fe both increase the
bulk moduli of the pure systems. (Note: no elastic constant
data were used to fit the alloy cross functions in the present
work.) Unfortunately, we known of no experimental data to
validate our elastic modulus versus composition results.
However, based on the analysis of a Finnis-Sinclair-type
band filling model made in Ref. 34, we can speculate that the
bulk modulus and cohesive energy contributions from the
many-body term should increase as the d band approaches
half filling, while the atomic radius should decrease with
increasing d electron count for metals in the same row of the
periodic table. The pairwise contribution to the bulk modulus
will be greatest when the number of V-Fe bonds is maxi-
mized, since the V-Fe potential has the highest curvature.
Alloying V in Fe or vice versa increases the modulus, so by
this measure our semiempirical potential gives reasonable
predictions. In order to test this qualitative picture we per-
formed additional first-principles calculations to obtain the
lattice parameters of several V-Fe compounds at 7=0. The
results are presented in Table IV. Comparison of the results
of the first-principles calculations with the predictions based
upon the new, semiempirical potential shows that the poten-
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TABLE 1V. The bulk moduli of V-Fe compounds at 0 K.

B (GPa)
Compound First principles FS potential
V (bce) 187 156
V;Fe (DO;) 216 285
VFe (B,) 190 398
VFe; (DO;) 186 288
Fe (bcc) 169 178

tial provides the correct qualitative picture, even though it
greatly overestimates the first-principles elastic constants.

IV. POINT DEFECT PROPERTIES IN V-Fe

Figure 5 shows the vacancy migration energy in the vi-
cinity of a single Fe atom. In order to compare different
mutual vacancy-Fe locations, all energies are calculated with
respect to the state where one Fe atom is located far away
from the vacancy. Therefore, the initial and final points of
each curve in Fig. 5 show the vacancy-Fe binding energy.
The vacancy is not bound to nearest-neighbor Fe atoms.
There is, however, a very weak binding to Fe atoms at other
nearby sites. This effect is largest for the Fe atom at the
second-neighbor site (0.03 eV), presumably due to elastic
interactions. Each peak on the curves in Fig. 5 shows a bar-
rier for migrating atoms. The migration barriers are broadly
similar, around 1 eV, with the exception of the motion of the
iron atom, which is strongly suppressed. We can anticipate

189 o, V-1Fe(sss,

L o, V-1Fe g
%, V-1Fe 311

141 B o + V-1Fe( 1)

U 8, V-1Feq ;)

1.24 * *, Fe-OFe(m.n

0.00 0.05 0.10 0.15 0.20 0.25 030
d «111>(nm)

FIG. 5. (Color online) Vacancy migration energy with nearby Fe
atoms. We identify each vacancy hop as A-nFey;, ; p, where A is the
type of migrating atom initially at {0,0,0} and n Fe atoms are lo-
cated at position {h,k,l} (coordinates are expressed in units of the
bee lattice parameter). The vacancy is initially at {1/2,1/2,1/2}.
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FIG. 6. (Color online) Point defect energies as a function of
temperature in pure V.

that vacancies will not be trapped by iron atoms under irra-
diation conditions. It is interesting to note that one of the
curves shown in Fig. 5 has a double peak. The same feature
was observed for several Fe potentials considered in Ref. 21.
Although calculation of static barriers along a transition
path is often used to determine how point defects migrate,
this approach can be incomplete because the point defect
formation energies themselves may depend on temperature
(e.g., see Refs. 29 and 35). The situation can be even more
complicated because migration mechanisms may change
with increasing temperature.”” In order to more accurately
determine diffusivities, we performed a series of molecular
dynamics simulations of point defect migration at elevated
temperature. First, however, we note that the V potential
yields a rather high melting temperature as compared with
experiment. This can lead to an underestimate of the magni-
tude of the changes in the vacancy formation and migration
energies at elevated temperature. Nonetheless, the simula-
tions should be able to correctly produce the main trends in
the diffusivity, which are the focus of the present study.
First we determined the atomic density as function of
temperature for pure V and 2% Fe solution in V. Next we
performed MD relaxation of the models consisting of 2000
atoms at each temperature for 5.9 ns (in 2 fs MD time steps).
Finally we introduced either one vacancy (by removing a V
atom) or one interstitial (adding a single V atom). All models
were first equilibrated for 40 ps and then data were collected
for 5.9 ns. The model energies averaged over 5.9 ns allowed
us to accurately calculate the temperature-dependent point
defect formation energies (note that at a finite temperature
this value is not equal to the defect formation free energy
Gy=E;~TS;, where S; is the defect formation entropy). The
results for pure V are shown in Fig. 6. The vacancy forma-
tion energy increases with temperatures up to 7=2800 K and
then suddenly drops. The increase of the vacancy formation
with temperature is not unusual; similar results were found
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FIG. 7. (Color online) Temperature dependence of the V self-
diffusivity calculated with a fixed point defect concentration (see
text). The data points shown by the small symbols were excluded
from the Arrhenius fit and calculation of the migration energy.

for pure Al (Ref.35) and Zr.*® The interstitial formation en-
ergy is more complex; as the temperature is raised, it first
increases, then plateaus between 1000 and 2600 K and then
drops sharply.

The diffusivity can be determined directly from the MD
simulations in terms of the mean square displacement of at-
oms {(Ar?),

R

6t ©

where ¢ is the simulation time over which the mean square
displacement is averaged. It is interesting that atoms can dif-
fuse even in a “perfect” bec lattice (i.e., one in which no
point defects were introduced) close to the melting tempera-
ture (see Figs. 7 and 8). We refer to this as the intrinsic
mechanism of diffusion. This mechanism was also observed
for Zr,* which is also bce at high temperature. Of course the
activation energy for such a diffusion mechanism is ex-
tremely high (see Table V) such that it makes a significant
contribution to the diffusivity only near the melting tempera-
ture. The intrinsic mechanism of diffusion is likely associ-
ated with the production of Frenkel pairs. Insofar as we are
aware, significant intrinsic diffusion has not been observed in
either fcc and hcp metals. Because of the existence of this
intrinsic mechanism, we exclude for the high-temperature
data (where intrinsic diffusion is significant) from our deter-
mination of the activation energy for point-defect-based dif-
fusion.

Figure 7 shows the V self-diffusion data in the models
containing either one vacancy or interstitial. Except for high
temperatures (where the intrinsic mechanism of diffusion be-
comes important) and low temperatures (where diffusion is
too slow to yield sufficient statistics from the MD simula-
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FIG. 8. (Color online) Temperature dependence of the V self-
diffusivity in the interstitial mechanism.

tions), the data were well fitted by an Arrhenius expression.
Since the point defect concentration was the same at all tem-
peratures, the slopes of the Arrhenius plots are the vacancy
and interstitial migration energies (divided by the Boltzmann
constant). These values are shown in Table V. It is interest-
ing that the vacancy migration energy appears to be larger
than the barrier obtained from static calculation. The intersti-
tial migration energy is much smaller than the vacancy mi-
gration energy, while interstitial formation energy is higher
than the vacancy formation energy. Thus under thermal con-
ditions, self-diffusion in pure V proceeds via the vacancy
mechanism at low temperatures and via the interstitial
mechanism at high temperatures, where the transition is at
~1200 K. Note that, in our analysis, we ignored the effect of
the entropy part of the activation free energy.

The additional increase in the activation energy observed
in experiment at high temperature may be associated with the
contribution of the intrinsic mechanism of self-diffusion, as
discussed above. Under irradiation conditions, similar num-

TABLE V. Point defect migration energies inferred from MD
diffusivity calculations.

Diffusant Matrix Point defect E}¥ (eV/atom)
v Pure V None 7.56
\Y% Pure V Vacancy 1.12
v Pure V Interstitial 0.14
\Y% VogFeq, None 6.44
\Y% VogFeq, Vacancy 1.18
\Y% VogFeq, Interstitial 0.61
Fe VogFeq, None 6.07
Fe VogFeq, Vacancy 0.94
Fe VogFeq, Interstital 0.04
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bers of vacancies and interstitials are produced athermally. In
such cases, defect formation energies are irrelevant and dif-
fusion will be dominated by interstitials at all temperatures.
While our simulations focus on high temperatures, an ear-
lier simulation study®® examined self-interstitial diffusion in
pure V starting from 7=100 K. In that study, the authors
found that the diffusivity data do not lie on a straight line in
Arrhenius coordinates and a sharp change in the slope was
observed around 7=700 K. This effect was attributed to the
rotation of the self-interstitial between (111) directions via a
barrier at (110). These results do not contradict our data since
we consider diffusion only starting from 7=600 K and data
at 7=1000 K were used to determine the migration energy.
We anticipate that for the new potential the transition asso-
ciated with the self-interstitial rotation will occur at lower
temperature since the new potential yields a difference be-
tween the (110) and (111) self-interstitial formation energies
of 0.28 eV (in accordance with the first-principles data) vs
0.46 eV found from the potential used in Ref. 36. The mi-
gration barrier of the (111) crowdion is 0.02 in each case.
The authors of Ref. 36 correctly note that when the migration
energy is smaller than k7, diffusion is not thermally activated
(i.e., it is athermal). Indeed our data for the self-diffusivity in
the interstitial mechanism also fall on the straight line in the
D vs T coordinates as was suggested in Ref. 36 (see Fig. 8).
We now consider the effect of Fe on point defects in V.
Figure 7 shows that the addition of Fe accelerates V diffu-
sion via the intrinsic mechanism. This may be associated
with two facts: (i) Fe decreases the melting temperature of V
and (ii) Fe has a smaller atomic radius than V (leading to
smaller migration barriers). Since Fe is repelled from vacan-
cies, it does not significantly affect vacancy diffusion, as
seen in Fig. 7 and Table V. However, since Fe is attracted to
interstitials, addition of Fe dramatically decreases the V dif-
fusion via the interstitial mechanism (see Fig. 7). The appar-
ent fourfold increase of the V migration energy in the inter-
stitial mechanism is due not to a real increase in barrier
energy, rather it shows that the interstitial spends most of its
time associated with Fe, enhancing Fe diffusion and reducing
V self-diffusion. Interstitial diffusion in pure vanadium is
especially fast on account of the possibility of multiple cor-
related jumps for 1D migration along (111). The iron impu-
rities disrupt this motion in two ways, first by direct pinning
of the (111) interstitial if the Fe lies in the path of the inter-
stitial, and second by forcing the (111) dumbbells to reorient
away from the fast (111) direction into the slower (110) di-
rection. This rotation restores the Arrhenius behavior.
Figure 9 shows the results of the simulation for Fe diffu-
sion. Of course, these data contain more noise since the mod-
els contained only 40 Fe atoms. However, the trends are
quite clear. Fe atoms diffuse faster than V atoms via the
intrinsic mechanism. The diffusivities of the Fe and V atoms
in the V-rich alloy via the vacancy mechanism are very simi-
lar. Finally, Fe atoms diffuse very much faster than V atoms
in the V-rich alloy via the interstitial mechanism; the Fe mi-
gration energy is very low and the Fe diffuses athermally.
Tables I and II show that the lowest mixed interstitial forma-
tion energy (which is the sum of the self-interstitial forma-
tion energy and the self-interstitial-substitutional interaction
energy) at T=0 is 2.81-0.24=2.57 eV. This value is just a
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FIG. 9. (Color online) Temperature dependence of the Fe diffu-
sivity in V calculated under the condition of a fixed defect concen-
tration (see text). The data points shown by small symbols were
excluded from the Arrhenius fit calculation of the migration energy.

little smaller than the energy of formation of the vacancy-Fe
pair, which is 2.49+0.14=2.63 eV. Since the Fe migration
barrier in the vacancy mechanism is much higher than that in
the interstitial mechanism, this is consistent with our MD
result that Fe diffuses in V via an interstitial mechanism.

V. CONCLUSIONS

To summarize, we have performed a series of first-
principles point defect calculations in vanadium with and
without small amounts of iron to expand the existing point
defect data base. We have introduced an electronic structure
embedding approach to improve the description of point de-
fects by including semicore electrons for some V atoms
(those near to the interstitial where the semicore levels are
broadened) but not those further from the point defect. This
enables us to combine good accuracy at the defect with large
supercells to correctly describe the short-range electronic ef-
fects and the long-range strain fields. Our first-principles cal-
culations show that vacancies are not attracted to Fe impuri-
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ties, but that interstitials are, and the configuration of the
interstitial can be changed from (111) to (110) by the pres-
ence of Fe.

Based on these data, previous first-principles work, and
new calculations of model liquid structures, we have fitted an
interatomic potential for the V-Fe system that describes the
important configurations likely to arise when such alloys are
exposed to neutron radiation. This potential is in a form suit-
able for molecular dynamics simulations of large systems.

Using the potential, we have calculated the migration bar-
riers of vacancies in the presence of iron, showing that these
are broadly similar, and that iron and vacancies do not comi-
grate, but that iron migration is greatly enhanced by the pres-
ence of interstitials. Vanadium self-diffusion via an intersti-
tial mechanism is dramatically slowed by the presence of
small quantities of iron, which traps and rotates the dumbbell
interstitial. Escape from the pinned configuration becomes
the barrier to this mechanism. It is not clear how or even
whether this is connected with the dramatic increase in irra-
diation swelling observed when Fe is added to vanadium.'*!

Although the trends are the same, there is a marked nu-
merical discrepancy in each case between migration barriers
calculated from molecular dynamics and those evaluated
from static barrier calculations. Since this appears in the ex-
ponent of the diffusion rate, it suggests that simply employ-
ing static migration barriers in, for example, a kinetic Monte
Carlo approach, may give aging processes in error by an
order of magnitude.

Although the focus of this study has been Fe in V, it
illustrates the dramatic effects that even a small amount of
alloying material can have on diffusion properties. While we
have concentrated on the dilute iron limit here, it is likely
that at higher concentrations other considerations, such as
migration of interstitial clusters with multiple Fe atoms, may
become important.
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