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The ability to predict the behavior of point defects in metals, particularly interstitial defects, is
central to accurate modeling of the microstructural evolution in environments with high radiation
fluxes. Existing interatomic potentials of embedded atom method type predict disparate stable
interstitial defect configurations in vanadium. This is not surprising since accurate first-principles
interstitial data were not available when these potentials were fitted. In order to provide the input
information required to fit a vanadium potential appropriate for radiation damage studies, we
perform a series of first-principles calculations on six different interstitial geometries and vacancies.
These calculations identify tH&11) dumbbell as the most stable interstitial with a formation energy

of approximately 3.1 eV, at variance with predictions based upon existing potentials. Our potential
is of Finnis—Sinclair type and is fitted exactly to the experimental equilibrium lattice parameter,
cohesive energy, elastic constants and a calculated unrelaxed vacancy formation energy. Two
additional potential parameters were used to obtain the best fit to the set of interstitial formation
energies determined from the first-principles calculations. The resulting potential was found to
accurately predict both the magnitude and ordering of the formation energies of six interstitial
configurations and the unrelaxed vacancy ground state, in addition to accurately describing the
migration characteristics of the stable interstitial and vacancy. This vanadium potential is capable of
describing the point defect properties appropriate for radiation damage simulations as well as for
simulations of more common crystal and simple defect propertie20@3 American Institute of
Physics. [DOI: 10.1063/1.1555275

I. INTRODUCTION tiscale(both in space and timesince the evolution is medi-
ated by a combination of atomic level dynamics, defect
Vanadium-based alloys are among the candidate strughysics, nonequilibrium thermodynamics and transport
tural materials for use in future fusion reactf)r'Ehese aIonS kinetics3* The simulations at larger scales must be param-

combine several appealing properties: they do not readilgterized either using data obtained from experiment or from
become radioactive under a 14 MeV neutron flux, they exsimylations on the smaller scales. Hence, the multiscale
hibit good strength at elevated temperatures, are compatiblgmation framework rests on the reliability of the atomistic
with liquid lithium and exhibit a high thermal stress factor gy jation results. At a minimum, atomistic simulations must
(low thermal expansion and elastic modulus a result, s 4pje to reproduce the structure and energetics of the point

these materials have received considerable experimental aglte s that are present in the irradiated material, in addition

theoretltc?I attzntlt(_)ﬁ.l\_/lzdellndg of radtlatl?n dlamalgetz_ mutit tto the perfect crystal properties. The point defect properties
account for radiation-induced microstructural evoution that, o, ¢ particular interest in these materials since their pro-
leads to severe degradation of a wide range of |mportan§ . o P o
mechanical properties and significant dimensional changes.ucuon’ migration and annihilation control the radiation-
induced swelling, yield strength and ductility of metallic al-

A comprehensive modeling program must be inherently mul- ; o
loys in such applications.

The reliability of the atomistic simulations depends
dElectronic mail: srol@princeton.edu largely on the accuracy of the modeled atomic interactions.
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TABLE |. Formation energiegin eV) of several types of interstitials from existing EAM/FS interatomic
potentials(the sources of the potentials are the references in column 1

(100 (110 (111 (111
Reference dumbbell dumbbell dumbbell crowdion Octahedral
18 4.58 4,90 4,78 .. 4.64
19 4.96 4.16 4.61 4.60
21 4.24 4.80 5.21 4.06

While first-principles methods constitute the most reliableprinciples calculations of interstitial properties will require
approach to determining atomic interactions, application osome of the largest calculation cells ever used.

these methods to systems with more than a few hundred In this study, we describe the procedure employed to fit
atoms is not feasible. Most atomistic simulations of defectsan interatomic potential for vanadium that is suitable for ra-
in metals are performed using semiempirical or empiricaldiation damage simulations, report this potential, and com-
descriptions of atomic interactions, such as tight bindingpare predictions made using this potential to first-principles
methods, bond order potentials,embedded-atom-method results and experiments. We first report the results of system-
(EAM) potentials’® Finnis—Sinclai (FS potentials, or atic first-principles calculations of point defectself-
simple pair potentials. Each approach represents a differemterstitials and vacancigsn vanadium. Several different
trade-off between errors due to small simulation size angbossible self-interstitial structures were investigated to deter-
inaccurate forces. While simple pair potentials are often camine which is stable and to provide additional data to be
pable of predicting some crystalline properties, they alsaised in the potential fitting procedure. In addition to fitting to
have some dramatic shortcomings that arise from their oveboth point defect formation and migration energies, we fit to
simplistic form in predicting the sign of the surface relax- perfect crystal datélattice parameter, cohesive energy, elas-
ation, in reproducing the experimental Cauchy pressuréic constants Simulations performed with this potential con-
(C1o—Cua)/2, and in predicting some defect propertf®$!  firm that it reproduces both perfect crystal properties and
EAM/FS many-body potentials have been proven to bepoint defect formation energies. In addition, we use the po-
widely applicable to surfaces:? vacancies®!* phonon tential to determine phonon spectra and to determine the ac-
spectra® dislocations® and alloy properties’ Most of the  tivation energy for diffusion and the threshold displacement
recent atomistic radiation damag@eascadesimulation have energy for neutron irradiation of vanadiutne., the mini-
used potentials of EAM/FS type, which are both computa-mum kinetic energy of a neutron required to produce stable
tionally efficient and provide a reasonable description ofpoint defects using moledular dynamics.

many types of crystal defects. Typically, potentials of this

type are fit to bulk propertie¢lattice parameter, cohesive

energy, elastic constantand to the vacancy formation en- !l FIRST-PRINCIPLES METHOD

ergy. Within the density functional pseudopotential

. Becaqse inte.rs;'titial properties have not previously bee'?ramework,z“ the total energy of a system with a given ionic
included in the fitting procedure for most EAM/FS poten- configuration is expressed in atomic units =1, i=1,
tials, it is not surprising that different EAM/FS potentials =1) as

yield widely disparate predictions for the energetics of self-

—F . . . Hartree o
interstitials in vanadium as well as the structure of the stable Etor= Exinetic™ Eetiont Eerel T Exc Eion-ion

interstitial 121%2°as shown in Table I. This failure may be ocep 1

traced to the fact that the minimum interatomic separation => E <¢, Kl — §V2+Vi0n ¢i,k>

near interstitials is much smaller than the equilibrium nearest ke

neighbor spacing in a perfect crystal and that the atomic 1 p(Np(r")

rearrangements are very anisotropic close to the interstitials. + EJ ] drdr’

This deficiency arises because of the dearth of experimental

data for self-interstitials: they are present in large quantities 1 Z,Z,
only in irradiated specimerf3.One approach by which to +f exclp(r),Vp(r)]p(r)dr+ 224 TR-R)|
address these deficiencies is to obtain accurate predictions of b
point defect properties from first-principles methods and use (1)
these in the fitting procedure for the interatomic potential. ocep

First-principles calculations can also be used to provide reli- p(r)=§k: Z (Wi ki ) 2

able predictions of self-interstitial properties that can be used

in molecular dynamics and kinetic Monte Carlo studies ofwhereR, andZ, are coordinates and ionic charges of tkie
point defect evolution in irradiated materidfs. First-  atom, respectivelys;  is a valence pseudowave function
principles calculation of self-interstitial properties for iron corresponding to theth band at theék point in the Brillouin
have been reported previoufThe large lattice distortions zone(BZ). For the exchange-correlation energy density,
associated with self-interstitials imply that accurate first-which reflects the quantum many-body interaction of the
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TABLE Il. Comparison of the equilibrium properties of vanadium obtained via first-principles calculations and
experiment. Values in parentheses refer to calculations performed at the experimental lattice para8peter. 3
core (33p valence refers to our pseudopotential results where tBeaBd 3 electrons are not include@r
included in the valence. FLAPW is an all-electron calculation.

3s3p core F3p valence FLAPW  FLAPW’ Experiment
ao (A) 2.993.02 3.003.02 3.00 2.99 3.02
B (eV/A®) 1.20 1.14 1.12 1.23 0.999
dB/dP 4.1 3.8 3.8
Cy; (eVIA®) 1.691.49 1.61(1.44 1.43
Cy, (eVIA3) 0.9490.824 0.8870.787 0.743
C.4 (eVIA®) 0.1370.139) 0.1250.112 0.269

aReference 30.
PReference 31.
‘Reference 32.

electrons, we use the generalized gradient approximatioant stress tensor. The values in parentheses in Table Il are
(GGA) with the functional form developed by Perdew evaluated at the experimental equilibrium lattice parameter.
etal?® To estimate the errors inherent in the pseudopotential, we
A plane wave basis is used to expand the wave functiongenerate another pseudopotential for which tiseaBd 3
) orbitals are removed from the core and treated as valence
Y1) =2 i ((G)el O, (3)  electrons. Table Il also shows a comparison of our pseudo-
¢ potential results with all-electrofFLAPW) calculationd>2
where summation over th@ vectors is bounded by the en- and experiment® Overall, the agreement between the elastic
ergy cutoff Eg,) in such a way thatk+ G|2<2E,,. For constantsC;; and the bulk modulu$ from the calculations
the electron—ion interaction represented\lly,, we use an and experimen{and other reference calculationis quite
ultrasoft pseudopotentfl which has good transfer proper- good except foiC,, which shows relatively large deviation
ties while requiring only a relatively small energy cutoff for from experiment. The agreement in the elastic constants is
plane wave expansion of the valence orbitals. In pseudopdmproved when the calculations are performed at the experi-
tential formalism, the core electrons which do not contributemental lattice parameter, indicating that the errors in the elas-
to interatomic bonding are implicitly included in repulsive tic constants are associated to a large extent with underesti-
interaction near the core. This dramatically accelerates thmation of the lattice parameter.
computation by reducing the number of electrons that has to
bg tregteq explicitly in the calculation. Including plane Waves|| poINT DEFECT ENERGIES IN VANADIUM
with kinetic energy less than 408 eV ensures convergence of
the total energy to within 0.02 eV/atom in crystalline vana-A. Self-interstitials

dium. In generating the pseudopotential, we employ the  Figyre 1 shows a schematic illustration of the six high-
3d%4s?4p° valence electron configuration while underlying symmetry self-interstitials that we examined via first-
core electrons are frozen. We use one projector for ach principles calculations. Before considering the relative ener-
andp orbital and two projectors for eachorbital in order o gjes of these different configurations, we first examine the
accurately describe thé bands. The cutoff radii employed convergence of the formation energy with respect to super-
for the ionic potential are 1.13,1.34, and 0.95 Afor h@,  ce|l size in a system containing a singlEL1)-dumbbell in-
and d channels, respectively. We include nonlinear corestitial. The supercell consists of a simple cubic arrange-

correctiond’ in the exchange-correlation energy to account
(a) (b)

for the interaction between valence and core charges.

The computer packagewscrF® was used for the first-
principles calculations. This program not only calculates the
electronic structure at a given ionic configuration but also
relaxes the atomic coordinates as well as the size and shape
of the simulation cell. In our calculations, we optimize the
atomic positions until the Hellmann—Feynman forces are less
than 5x10 2 eV/A. Damped cell dynamié8 are used to
relax lattice vectors and we ensure that all components of the
average stress tensor are less thanl® * eV/A3. As a
simple test of the method, we calculate several bulk proper-
ties of vanadium(see Table . The lattice parameter, bulk
modulus, and its derivative are obtained by fitting the (d)
energy—volume curve to Birch's equation of stéteThe
elastic constants are obtained from the stress—straifg. 1. Schematic illustration of possible interstitiata: (111), (b) (110),
relation®*i.e., we apply*+ 1% strain and calculate the result- and(c) (100 dumbbells,(d) crowdion, (e)tetrahedral, andf) octahedral.

(f)
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4.6 ———m— similar convergence check for th€00-dumbbell self-
:'; variable cell —-x--- | interstitial also suggests that &4t X 4 supercell is sufficient

to ensure convergence to within 0.05 &ée Table ).

Table IV shows the interstitial formation energigf for
all of the interstitials in Fig. 1 evaluated with the fixed-
volume 4x4 X 4 supercell. The stable self-interstitial in V is
either a(111) dumbbell or a crowdion. The very small dif-
ference in energy<£0.01 eV) between th¢111) dumbbell
Supercell (V unit cell) and the crowdion is beyond the accuracy of density func-

o _ N _ tional calculations. The prediction that thEL1) dumbbell is
FIG. 2. Variation of the{113)-dumbbell self-interstitial formation ener@| yho most stable interstitial contradicts earlier results obtained
with the linear dimension of the cubic supercell. In fixed cell data, the

internal coordinates of the atoms are fully relaxed but the cell size and shapdSing EAM/FS potentials>***°The (110 dumbbell, which
are fixed, whereas in variable cell data, both the internal coordinates and thig the most stable interstitial in some of the EAM studies, has
size/shape of the cell are relaxed. the third smallest formation energy. Furthermore, the pre-
dicted magnitude oE,f (3.14 eV is well below that found in
. ) previous EAM/FS calculationg}.61-4.78 eV.
ment of mxmxm body-centered-cubidbco unit cells The physics underlying the relative valuesk|ffor the
(2m® atomg. The supercell is periodically repeated in space<111>’ (110, (100 dumbbells can be understood by examin-
to represent an infinite, perfect crystal. The defect formatioqng the type of strain produced by these differently oriented
energy s obtain_ed frof‘? the difference in system energy WitrHumbbells. In each case, the predominant deformation is
and without an mters’ztf; uniaxial strain along the direction of symmetry of the dumb-
f_ N bell. This suggests that the modulus associated with uniaxial
Ei=EaN+1) = =5~ EalN), @ girain in the direction of the dumbbelM j,, should be

whereN is the number of atoms in the perfect crystal andcorrelated with the formation energy. This is confirmed in
N-+1 in the system with an interstitial. Figure 2 shows the 1able V which shows that theoretical and experimental val-

variation of the formation energg! of the (111)-dumbbell ~ U€S 0fMjj, are exactly of the same order as e of the
self-interstitial with respect to the linear dimension of the corresponding dumbbelsee Table IV. _

supercell. More details of these calculations are provided in  NO direct experimental data exist from which we can
Table 1lI. The supercell containing 251 atoms is one of thedetermine the symmetry of the self-interstitial in V. However,
largest transition metal systems ever examined via firstit is well known from radiation-damage experiments that the
principles methods. Figure 2 suggests tﬁéltconverges to Mmigration barrier of the self-interstitial is very small
within 0.05 eV for supercells larger thanx®x 3 (i.e., at (<0.01eV) and that diffusion occurs even at 4°KThe
least 129 atoms Although relaxation of the cell shape sig- first-principles data, presented above, suggest that the lowest
nificantly lowersE', this type of relaxation gives an under- activation energy migration path for thg11) dumbbell cor-
estimate of the formation energy at large supercell sizegesponds to a transformation from (a1l dumbbell to a
whereas the fixed cell calculations lead to an overestimate gfrowdion (i.e., the transition stajebefore and then back
E. If the relaxation of the supercell were purely dilational, again to &111) dumbbell. The diffusion barrier for this path
the elastic energy of this relaxation would bE, is simply the difference irE] between the(111) dumbbell
=V,P?/2B, whereV, is the equilibrium volume anB isthe  and the crowdion configuration. As shown in Table IV, this
pressure found in the fixed supercell calculation. Examinaenergy is very small £0.01 eV), consistent with experi-
tion of Table Il shows thaE,, provides a measure of the ment. Interestingly, these results suggest that at low tempera-
effect of the supercell size o/ . The overall convergence tures, self-interstitial diffusion should be one dimensional
of the first-principles calculation in Table Il is faster than in (along the(111) direction. The transition state for rotation
studies with empirical potentiafs®® (see also beloyywhere  from a given(111) direction to another corresponds to the
typically thousands of atoms are included in the supercell. A110-dumbbell configuration. Therefore, the activation en-

Formation energy (eV)

TABLE lIl. Convergence oiEIf for the (111)-dumbbell self-interstitial in V with respect to the supercell size.
E{(l) and E,f(2) indicate the formation energy for the fixed and relaxed cells, respectluglis the elastic
energy assuming dilational relaxation of the superégllis the number ok points sampled in the first BZ. The
energies and pressur@) are in eV and GPa, respectively. We define the pressure as minus one third of the
trace of the stress tensor for the fixed CAIE|f [= E,f(l)f E,f(2)] indicates the change in the formation energy
when the cell is relaxed. For comparison, the convergence oflth@ dumbbell is shown in the last column.

Supercell size Natom Ny El(1) P Eq Ef(2) AE[  E[(1)[100]
2ayX 2agX 23, 16(+1) 64 4.49 17.3  0.80 3.46 1.03 5.86
3ayX 32X 33, 54(+1) 27 3.28 46 023 2.99 0.29 3.91
4ayX dagX 4a, 128(+1) 8 3.14 14 0.6 3.10 0.04 357
5a,% 535X 5a, 250(+1) 8 3.12 05 001 3.06 0.06 3.57
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TABLE IV. The formation energies of the interstitials in Fig. 1. bonds. The implication is that it is more than eight times
(100 (110 a1 11D harde_r _to compress eight neighboring atom bonds together
dumbbell dumbbell dumbbell crowdion Octahedral Tetrahedral than it'is to compress two. This can, in turn, be traced to a

fundamental misconception in fitting empirical potentials,
namely, that the short range repulsion is due to pairwise
overlap of core electrons. This can be clearly seen in the
predictions of pseudopotential calculations which specifi-
ergy for dumbbell rotation should be 0.44 €s&e Table 1V. cally exclude this effect, and show that the energy cost of
This suggests that at a sufficiently high temperature, th€ompression arises primarily from the increased kinetic en-

E|f 3.57 3.48 3.14 3.15 3.62 3.69

dumbbell should exhibit three-dimensional diffusion. ergy of the electrons. This observation does not, of course,
invalidate previous potentials. Rather, it is essentially a trans-
B. Monovacancy fer problem, and merely indicates that we should not expect

a potential fitted to high pressure data to perform well in
Unlike the self-interstitial, a monovacancy creates rela-gpplications involving the close approach of atoms without
tively small simple(i.e., centro symmetrjcdistortion. A 3 hydrostatic compression of the lattice. In EAM/FS formal-
X3x3 supercell is sufficient to study the isolated monova-jsm, this suggests that some of the resistance to compression
cancy when relaxing both internal coordinates and supercejy intrinsically many body, and so for the study of defect
size/shape. We usedkipoints in the irreducible BZ wedge. fitting should be done to interstitial energy rather than to high
Earlier studies on vacancies in tantafifrand tungste pressure data.
suggest that this is sufficient to obtain adequate convergence For this work, we parameterized a potential for vana-
for the formation energy. The vacancy formation eneEdy  dium following FS formalism of the second-moment ap-

can be computed as proximation to tight-binding theory, which is valid for
] N—1 d-band transition metals where charge transfer is
Ev=Ew(N—1)— N BN, ) unimportant? The basic equation for the energy of an atom

_ (i) is given by?®
where E(N—1) and E;(N) are the total energies of the

system with and without a vacancy, respectively. Our calcu- g —=1% V(rij)— pi?, (6)
lated formation energy is 2.6 eV of which 0.07 eV comes ]

from the volume relaxation. This is within the error bar of |, hare

the experimentally determined vacancy formation energy,

2.2+0.4 eV™ By assuming that the transition state is mid-  , =" 4y, ). @
way between two nearest neighbor atom positions along the i .

(112 direction, we estimate the monovacancy migration eNe use a cubic spline representation of the functigfss)
ergy as 0.33 eV, which is close to the estimated experimenta],, &(r;;) given by )
value of 0.5 e\f° S

V(r)=2 alrc—r)3H(r—r), (8)
IV. INTERATOMIC POTENTIALS k=1
. 2
A. Fitting method
<¢>(r>=k§1 AdR—1)H(R—T), (9)

A surprising result of the first-principles calculations is
that the self-interstitial formation energy is much smallerwhererk and R, are knot points such that>r,>rs>r,
than previously predicted on the basis of atomistic simula>r5>r6 andR,;>R,. H(x) is the Heaviside step function:
tions using EAM/FS potential&f. Tables | and IV. These H(x)=0 for x<0 andH(x)=1 for x>0. We fit six param-
pptentials modeled the nearest rjeighbor approach using thge g (the r, and R, are fixed exacth’ to reproduce the
high pressure data from electronic structure calculatfoms e cubic elastic constants, the cohesive energy, the lattice

“ H : A4 H
from the “universal equation of state™™ Such input data  arameter and the unrelaxed vacancy formation energy of
correspond to purely hydrostatic deformatiore., one that \anadium. These quantities are summarized in Table VI.

equally compresses all eight bonds around each jatwfile The fit to the vacancy formation energy was made for

deformation along #111) dumbbell is more closely uniaxial he energy of an unrelaxed vacancy using a Taylor expansion
(i.e., corresponding to compressing only two 0PpOSiNGg the many-body partE;"), and subtracted from the co-
hesive energy. Assuming the range extends to second neigh-

TABLE V. Theoretical values for the moduli associated with uniaxial strain, bors[x1= (\/3/2)a0; Xo= aO] this has an anaIyUC form of

M(11=(C11+2C15+4C0)/3, M(119=(C11+C19)/2+Cyq, and Mg Econ— E{/’u: 148 p(X1) + 6d(X5)
=Cy,, WhereC,,, C4,, andC,, are the elastic constants of the vanadium
single crystal. Units are in eV/& -8 /7¢(X1) +6¢(X,)
My Mo Moo —686(x1) +5¢(xa), (10
Theory 1.38 1.46 1.69 1
Experiment 1.33 1.35 1.43 ~ =8 (X:)+6d(X,). 11
5 VB(x1) +6(xo) (11)
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TABLE VI. Data used to fit the vanadium potential. The elastic moduli are from compilation by Simmons and
Wang (Ref. 45, and the unrelaxed vacancy formation energy and the cohesive energy are from the present
first-principles calculations.

Quantity a (R) Econ (€V) Cyy (eVIA3) Cy, (eV/IA3) Ca (eV/IAZ) ELY (ev)

Value 3.03 53 1.42 0.743 0.269 2.85

Only after the potential has been constructed is it possible to  Table VIII shows the resultant point defect formation
fully relax the vacancy. With previous vanadium potentials energies in vanadium. Excellent agreement between the for-
the relaxation energy has been about 0.25 eV. We assumecdhzation energies using the present potentials and first-
similar value would apply here, so we sﬁ{,’“= E{, principles results was obtained in all cages., within 5% or
+0.25 eV for fitting, takingE!=2.6 eV from the first- 0.18 e\). As in the first-principles results, th&11) dumbbell
principles data. We take the value Bf,, from the calori- and(111) crowdion are degenerate in energy and represent
metric datd’® The Cauchy pressuré,,—C,, also depends the most stable self-interstitial configurations. This result is
on the many-body term only, and witk.,,— E/; it provides  in contrast with that obtained using other EAM/FS inter-
a set of two linear equations féy; andA,. The equilibrium  atomic potential§éshown in Table ), which show a variety of
value ofp is fully determined by the difference betweE{)“ stable self-interstitial configurations. As for the first-
and Econ: po=2(Econ— E5Y)2. This is true for any EAM  principles results, the self-interstitial formation energies de-
model when the “squared” operator is replaced by the in-termined here are approximately 1 eV lower in energy com-
verse of the embedding operator. OceandA, are fit, the  pared with predictions made using other potentials. For
other quantities have a linear dependenceaan additional comparison, the distance between two atoms that
With six constraints satisfied exactly, the problem is re-compose a dumbbell is reported in Table IX for high-
duced to determining the two remaining free parameterssymmetry self-interstitials. The agreement is within 5% and
which we took to be the value of the “effective” potential it is even better when data are scaled by the lattice parameter
[V(rij)— ¢(Rij)/\/p—o] at the nearest neighbor separation andin each theoretical approach.
the value ofag. These were adjusted to give the best fit to ~ Perhaps a more sensitive test of the quality of the inter-
the difference in energy between bcc and face-centered-cubdomic potential is its ability to predict kinetic parameters,
(fco) structures correct ordering of the interstitial forma- such as the activation energies for point defect migration.
tion energy, the relaxation energy of the vacancy and thdhe activation energies for vacancy migration determined
high pressure equation of state. The relaxation energy of thisom the present potential, from first-principles calculations,
interstitials is much larger than that for the vacancy and, irand estimated from experimental d#tare 0.42, 0.33, and
the case of dumbbells, the “unrelaxed” state cannot bed.5 eV, respectively. The activation energies fr1D)-
uniquely defined because the dumbbell separation is arb#umbbell self-diffusion determined using this potential and
trary. Similarly, the lattice parameter of the fcc phase was nofirst-principles are 0.04 and 0.01 eV, respectively, while the
fitted because it is not possible to express the fcc formatio@xperimental value is less than 0.01 éXef. 39 (recall in
energy analytically. Sec. lll A that the first-principles results are not accurate for
The fact that a reasonable fit to all these data can benergies smaller than approximately 0.05)eVlhree-
obtained with two parameters indicates that fitting the firstdimensional diffusion requires rotation of tkiEL1) dumbbell
six quantities captures much of the physics of vanadium. Arom one(111) direction to another. The activation energy
similar result was obtained for irdfi. The fitted coefficients for such a rotation is 0.41 and 0.34 eV based upon the po-
are compiled in Table VII. tential and first-principles calculations. In all of these cases,
the agreement is very good, especially given the limits of
accuracy of the first-principles calculations and the uncer-

B. Point defect properties

The properties of the relaxed point defects were deter- _ » _
mined by minimizing the total energy with respect to all TABLE VII. Fitted coefﬂqents.for the present va}nadlum potenﬁlﬁhs.('S)
) . . . . and (9)]. r, and Ry are in units of the bcc lattice parametea,) while
atomic coordinates using a conjugate-gradient method. Per&befficientsak and A are in eVA3 and eV¥/a$, respectively. In order to
odic boundary conditions were employed and the simulatioimulate primary knock-on events, modification of the short range potential

cell size was varied to ensure that the formation energiets. €.g., the Biersack forrtRefs. 48 and 50is used.

were independent of the cell srflze_ to the _deswe_d accuracy 1,300 000 a 71861297
(Q.Ol e_\)). Th_e convergence C, \/_Vlth_the S|mulat|0_n cell rz 1.220 000 a, 221.019 869
size using this potential is shown in Fig. 3. The variable cellr, 1.150 000 as —203.133 261
E{ converges to the asymptotic value from below, while thatr, 1.060 000 a, 118.249 184
for the fixed cell converges from above, as observed in thés 0.950 000 as —93.678 070
first-principles results in Fig. 2. The saturation of the forma-¢ 0.866 025 86 141.643 266
. . 1 1.300 000 A 26.834 293
tion energy occurs at a slightly larger supercell than that forR2 1.200 000 A, 6.118 468

the corresponding first-principles calculation.
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TABLE VIIl. Comparison of the formation energies of point defects in vanadium obtained using the Finnis—
Sinclair potential fitted here and first-principles results. Energies are in eV.

(100 (110 (11 (119

Vacancy dumbbell dumbbell dumbbell crowdion Octahedral Tetrahedral

First principles 2.60 3.57 3.48 3.14 3.15 3.62 3.69
FS (present 2.63 3.60 3.66 3.27 3.27 3.60 3.64

@Unstable configuration; decays ta(200 dumbbell.

tainty in the experimental data. Preliminary displacementions, and finally to the prediction of evolving mechanical
cascade simulations performed using the present interatomjroperties through dislocation dynamics and constitutive
potential in a molecular dynamicVD) simulation have modeling. The results of such modeling can be no better than
shown that the vast majority of the point defects generateits foundation. In many cases, this foundation is atomistic
were vacancies and11)-dumbbell self-interstitialé® Thisis ~ modeling based upon empirical or semiempirical descrip-
consistent with the predictions made above based upon statiions of the underlying atomic interactions. The embedded-
relaxation using the potentighnd first principles Addi-  atom method and FS potentials have become the most com-
tional MD simulations show the transition from one- mon form of interatomic potentials used in large-scale
dimensionak111)-dumbbell diffusion at low temperature to atomistic simulations of metals. These potentials are typi-
three-dimensionall11)-dumbbell diffusion at high tempera- cally fit to the properties of the perfect crystal and to vacancy
ture. These MD simulations further demonstrate that thdormation energies. As such, no data are included in the fit on
present potential yields reasonable high temperature propelength scales much below that of the nearest neighbor spac-

ties. ing in the perfect crystal. On the other hand, radiation dam-
age is based upon collision cascades that typically produce
C. Phonon spectrum interstitials, with nearest neighbor spacings which are con-

We have calculated the phonon spectrum that Corre§|derably smaller. Therefore, it is not surprising that different

sponds to the present potenfiaMWe use the second deriva- interatomic potentials can lead to very different results for

tive of the potential to evaluate force constants and dynamithe properties of point defects that are central to prediction of

cal matrices? The many-body form of the potential radiation damage. Moreover, fitting the short range interac-

introduces several extra terms into the force constants WhiCFlon from high pressure data incorporates different physics

extends their effective range to double that of the pote‘ﬁtial.Crgsrziggl)siirer??(;rfn?;ggr:n;enr;{nﬁf’ typically resulting in ex-
In principle, this could be used to fit the phonon spectrum, y g gies.

but here no information about the phonons was included in In order to build interatomic potentials appropriate for

o ) : ) . radiation-damage studies in vanadium, we performed a series
the fitting process so the dispersion relation provides a sever

. o : . 5 first-principles calculations designed to determine which
test, although for use in radiation-damage simulations pre: . o . .
tlypes of interstitials are stable in V and to determine the

cise harmonic phonons near the zone boundaries are not CI¥elative formation energies of competing point defects. These
cial. Figure 4 show the predicted dispersion, calculated at g Petng p )

0 K compared with the room temperature data from therma arge-scale flrst-prmt_:lples _c_alcglan_ons clearly show that the
. . .. most stable type of interstitial is either(dall) dumbbell or
diffuse scattering of x ray$ In general, the potential is

slightly too soft, but the main discrepancy appears to be (tllb crowdion, rather than the 10, dumbbell,(100 dumb-

the H point, where the potential underestimates the exper?pe”' or octahedral or tetrahedral interstitials. Further, these

mental value by 30%. Some of this can be attributed to ther(-:ak.:ulatlonS also explained the large exte_nt of '”tegs““f"" dif-
. . fusion observed at very low temperature in vanaditifhis
mal effects, and the underestimate seems to be typical of.. . . . .
other similar potential® iffusion occurs via a one-dimensional random walk process
' in which the interstitials move froil11)-dumbbell to(111)-
crowdion positions with an extremely low activation barrier,
while at high temperature, rotations of tk&l1l) dumbbell
Modern multiscale modeling of radiation-damage phe-
nomena relates atomic scale molecular dynamics simulation
of cascades to point defect production and migration which, 34

V. CONCLUSIONS

( _ aeie . S s fixedcell —— ]
in turn, feeds into kinetic Monte Carlo and rate equation T variable cell ------
modeling of the temporal evolution of point defect distribu- P aas

q:) e

o 332

S 33
TABLE IX. Comparison of the atomic separations of a dumbbell from first- k5] 3.08
principles calculations and the present FS potentials. Units are in A. 5 396

- 324 £ 1 1 1 1 1

(100 (110 (119 4 5 6 7 8 9 10

First principles 2.159 2.076 2.124 Supercell (V unit cell)
FS (present 2.103 2.167 2.190 FIG. 3. Convergence dE| with the supercell size for thgl11) dumbbell

using the potential developed here.
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