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Interatomic potential for vanadium suitable for radiation
damage simulations
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The ability to predict the behavior of point defects in metals, particularly interstitial defects, is
central to accurate modeling of the microstructural evolution in environments with high radiation
fluxes. Existing interatomic potentials of embedded atom method type predict disparate stable
interstitial defect configurations in vanadium. This is not surprising since accurate first-principles
interstitial data were not available when these potentials were fitted. In order to provide the input
information required to fit a vanadium potential appropriate for radiation damage studies, we
perform a series of first-principles calculations on six different interstitial geometries and vacancies.
These calculations identify the^111& dumbbell as the most stable interstitial with a formation energy
of approximately 3.1 eV, at variance with predictions based upon existing potentials. Our potential
is of Finnis–Sinclair type and is fitted exactly to the experimental equilibrium lattice parameter,
cohesive energy, elastic constants and a calculated unrelaxed vacancy formation energy. Two
additional potential parameters were used to obtain the best fit to the set of interstitial formation
energies determined from the first-principles calculations. The resulting potential was found to
accurately predict both the magnitude and ordering of the formation energies of six interstitial
configurations and the unrelaxed vacancy ground state, in addition to accurately describing the
migration characteristics of the stable interstitial and vacancy. This vanadium potential is capable of
describing the point defect properties appropriate for radiation damage simulations as well as for
simulations of more common crystal and simple defect properties. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1555275#
ru
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I. INTRODUCTION

Vanadium-based alloys are among the candidate st
tural materials for use in future fusion reactors.1 These alloys
combine several appealing properties: they do not rea
become radioactive under a 14 MeV neutron flux, they
hibit good strength at elevated temperatures, are compa
with liquid lithium and exhibit a high thermal stress fact
~low thermal expansion and elastic modulus!. As a result,
these materials have received considerable experimenta
theoretical attention.2 Modeling of radiation damage mus
account for radiation-induced microstructural evolution th
leads to severe degradation of a wide range of impor
mechanical properties and significant dimensional chan
A comprehensive modeling program must be inherently m

a!Electronic mail: srol@princeton.edu
3320021-8979/2003/93(6)/3328/8/$20.00
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tiscale~both in space and time! since the evolution is medi
ated by a combination of atomic level dynamics, defe
physics, nonequilibrium thermodynamics and transp
kinetics.3,4 The simulations at larger scales must be para
eterized either using data obtained from experiment or fr
simulations on the smaller scales. Hence, the multisc
simulation framework rests on the reliability of the atomis
simulation results. At a minimum, atomistic simulations mu
be able to reproduce the structure and energetics of the p
defects that are present in the irradiated material, in addi
to the perfect crystal properties. The point defect proper
are of particular interest in these materials since their p
duction, migration and annihilation control the radiatio
induced swelling, yield strength and ductility of metallic a
loys in such applications.

The reliability of the atomistic simulations depend
largely on the accuracy of the modeled atomic interactio
8 © 2003 American Institute of Physics
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TABLE I. Formation energies~in eV! of several types of interstitials from existing EAM/FS interatom
potentials~the sources of the potentials are the references in column 1!.

Reference
^100&

dumbbell
^110&

dumbbell
^111&

dumbbell
^111&

crowdion Octahedral

18 4.58 4.90 4.78 ¯ 4.64
19 4.96 4.16 4.61 4.60 ¯

21 4.24 4.80 5.21 4.06 ¯
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While first-principles methods constitute the most relia
approach to determining atomic interactions, application
these methods to systems with more than a few hund
atoms is not feasible. Most atomistic simulations of defe
in metals are performed using semiempirical or empiri
descriptions of atomic interactions, such as tight bind
methods,5 bond order potentials,6 embedded-atom-metho
~EAM! potentials,7,8 Finnis–Sinclair9 ~FS! potentials, or
simple pair potentials. Each approach represents a diffe
trade-off between errors due to small simulation size a
inaccurate forces. While simple pair potentials are often
pable of predicting some crystalline properties, they a
have some dramatic shortcomings that arise from their o
simplistic form in predicting the sign of the surface rela
ation, in reproducing the experimental Cauchy press
(C122C44)/2, and in predicting some defect properties.10,11

EAM/FS many-body potentials have been proven to
widely applicable to surfaces,7,12 vacancies,13,14 phonon
spectra,15 dislocations,16 and alloy properties.17 Most of the
recent atomistic radiation damage~cascade! simulation have
used potentials of EAM/FS type, which are both compu
tionally efficient and provide a reasonable description
many types of crystal defects. Typically, potentials of th
type are fit to bulk properties~lattice parameter, cohesiv
energy, elastic constants! and to the vacancy formation en
ergy.

Because interstitial properties have not previously b
included in the fitting procedure for most EAM/FS pote
tials, it is not surprising that different EAM/FS potentia
yield widely disparate predictions for the energetics of se
interstitials in vanadium as well as the structure of the sta
interstitial,18,19,20 as shown in Table I. This failure may b
traced to the fact that the minimum interatomic separat
near interstitials is much smaller than the equilibrium nea
neighbor spacing in a perfect crystal and that the ato
rearrangements are very anisotropic close to the interstit
This deficiency arises because of the dearth of experime
data for self-interstitials: they are present in large quanti
only in irradiated specimens.21 One approach by which to
address these deficiencies is to obtain accurate predictio
point defect properties from first-principles methods and
these in the fitting procedure for the interatomic potent
First-principles calculations can also be used to provide r
able predictions of self-interstitial properties that can be u
in molecular dynamics and kinetic Monte Carlo studies
point defect evolution in irradiated materials.22 First-
principles calculation of self-interstitial properties for iro
have been reported previously.23 The large lattice distortions
associated with self-interstitials imply that accurate fir
r 2003 to 128.112.140.199. Redistribution subject to 
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principles calculations of interstitial properties will requi
some of the largest calculation cells ever used.

In this study, we describe the procedure employed to
an interatomic potential for vanadium that is suitable for
diation damage simulations, report this potential, and co
pare predictions made using this potential to first-princip
results and experiments. We first report the results of syst
atic first-principles calculations of point defects~self-
interstitials and vacancies! in vanadium. Several differen
possible self-interstitial structures were investigated to de
mine which is stable and to provide additional data to
used in the potential fitting procedure. In addition to fitting
both point defect formation and migration energies, we fit
perfect crystal data~lattice parameter, cohesive energy, ela
tic constants!. Simulations performed with this potential con
firm that it reproduces both perfect crystal properties a
point defect formation energies. In addition, we use the
tential to determine phonon spectra and to determine the
tivation energy for diffusion and the threshold displacem
energy for neutron irradiation of vanadium~i.e., the mini-
mum kinetic energy of a neutron required to produce sta
point defects! using moledular dynamics.

II. FIRST-PRINCIPLES METHOD

Within the density functional pseudopotenti
framework,24 the total energy of a system with a given ion
configuration is expressed in atomic units (me51, \51, e
51) as

Etot5Ekinetic1Eel-ion1Eel-el
Hartree1EXC1Eion-ion

5(
k

(
i

occp K c i ,kU2 1

2
¹21VionUc i ,kL

1
1

2 E r~r !r~r 8!

ur2r 8u
drdr 8

1E eXC@r~r !,¹r~r !#r~r !dr1
1

2 (
IÞJ

ZIZJ

uRI2RJu

~1!

r~r !5(
k

(
i

occp

^c i ,kuc i ,k&, ~2!

whereRI andZI are coordinates and ionic charges of theI th
atom, respectively.c i ,k is a valence pseudowave functio
corresponding to thei th band at thek point in the Brillouin
zone~BZ!. For the exchange-correlation energy densityeXC ,
which reflects the quantum many-body interaction of t
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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TABLE II. Comparison of the equilibrium properties of vanadium obtained via first-principles calculations
experiment. Values in parentheses refer to calculations performed at the experimental lattice parametes3p
core (3s3p valence! refers to our pseudopotential results where the 3s and 3p electrons are not included~or
included! in the valence. FLAPW is an all-electron calculation.

3s3p core 3s3p valence FLAPWa FLAPWb Experimentc

a0 ~Å! 2.99~3.02! 3.00~3.02! 3.00 2.99 3.02
B (eV/Å3) 1.20 1.14 1.12 1.23 0.999
dB/dP 4.1 3.8 3.8 ¯ ¯

C11 (eV/Å3) 1.69~1.49! 1.61~1.44! ¯ ¯ 1.43
C12 (eV/Å3) 0.949~0.824! 0.887~0.787! ¯ ¯ 0.743
C44 (eV/Å3) 0.137~0.131! 0.125~0.112! ¯ ¯ 0.269

aReference 30.
bReference 31.
cReference 32.
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electrons, we use the generalized gradient approxima
~GGA! with the functional form developed by Perde
et al.25

A plane wave basis is used to expand the wave funct

c i ,k~r !5(
G

ci ,k~G!ei (k1G)"r, ~3!

where summation over theG vectors is bounded by the en
ergy cutoff (Ecut) in such a way thatuk1Gu2,2Ecut. For
the electron–ion interaction represented byVion , we use an
ultrasoft pseudopotential26 which has good transfer prope
ties while requiring only a relatively small energy cutoff fo
plane wave expansion of the valence orbitals. In pseudo
tential formalism, the core electrons which do not contrib
to interatomic bonding are implicitly included in repulsiv
interaction near the core. This dramatically accelerates
computation by reducing the number of electrons that ha
be treated explicitly in the calculation. Including plane wav
with kinetic energy less than 408 eV ensures convergenc
the total energy to within 0.02 eV/atom in crystalline van
dium. In generating the pseudopotential, we employ
3d34s24p0 valence electron configuration while underlyin
core electrons are frozen. We use one projector for eacs
andp orbital and two projectors for eachd orbital in order to
accurately describe thed bands. The cutoff radii employe
for the ionic potential are 1.13, 1.34, and 0.95 Å for thes, p,
and d channels, respectively. We include nonlinear co
corrections27 in the exchange-correlation energy to accou
for the interaction between valence and core charges.

The computer packagePWSCF28 was used for the first-
principles calculations. This program not only calculates
electronic structure at a given ionic configuration but a
relaxes the atomic coordinates as well as the size and s
of the simulation cell. In our calculations, we optimize t
atomic positions until the Hellmann–Feynman forces are
than 531022 eV/Å. Damped cell dynamics29 are used to
relax lattice vectors and we ensure that all components of
average stress tensor are less than 531024 eV/Å3. As a
simple test of the method, we calculate several bulk prop
ties of vanadium~see Table II!. The lattice parameter, bul
modulus, and its derivative are obtained by fitting t
energy–volume curve to Birch’s equation of state.33 The
elastic constants are obtained from the stress–st
relation,34 i.e., we apply61% strain and calculate the resu
r 2003 to 128.112.140.199. Redistribution subject to 
n

n:

o-
e

e
to
s
of
-
e

e
t

e
o
pe

s

e

r-

in

ant stress tensor. The values in parentheses in Table II
evaluated at the experimental equilibrium lattice parame
To estimate the errors inherent in the pseudopotential,
generate another pseudopotential for which the 3s and 3p
orbitals are removed from the core and treated as vale
electrons. Table II also shows a comparison of our pseu
potential results with all-electron~FLAPW! calculations31,32

and experiment.33 Overall, the agreement between the elas
constantsCi j and the bulk modulusB from the calculations
and experiment~and other reference calculations! is quite
good except forC44 which shows relatively large deviatio
from experiment. The agreement in the elastic constant
improved when the calculations are performed at the exp
mental lattice parameter, indicating that the errors in the e
tic constants are associated to a large extent with under
mation of the lattice parameter.

III. POINT DEFECT ENERGIES IN VANADIUM

A. Self-interstitials

Figure 1 shows a schematic illustration of the six hig
symmetry self-interstitials that we examined via firs
principles calculations. Before considering the relative en
gies of these different configurations, we first examine
convergence of the formation energy with respect to sup
cell size in a system containing a single^111&-dumbbell in-
terstitial. The supercell consists of a simple cubic arran

FIG. 1. Schematic illustration of possible interstitials:~a! ^111&, ~b! ^110&,
and ~c! ^100& dumbbells,~d! crowdion,~e!tetrahedral, and~f! octahedral.
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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ment of m3m3m body-centered-cubic~bcc! unit cells
(2m3 atoms!. The supercell is periodically repeated in spa
to represent an infinite, perfect crystal. The defect format
energy is obtained from the difference in system energy w
and without an interstitial:

EI
f5Etot~N11!2

N11

N
Etot~N!, ~4!

whereN is the number of atoms in the perfect crystal a
N11 in the system with an interstitial. Figure 2 shows t
variation of the formation energyEI

f of the ^111&-dumbbell
self-interstitial with respect to the linear dimension of t
supercell. More details of these calculations are provided
Table III. The supercell containing 251 atoms is one of
largest transition metal systems ever examined via fi
principles methods. Figure 2 suggests thatEI

f converges to
within 0.05 eV for supercells larger than 33333 ~i.e., at
least 129 atoms!. Although relaxation of the cell shape sig
nificantly lowersEI

f , this type of relaxation gives an unde
estimate of the formation energy at large supercell siz
whereas the fixed cell calculations lead to an overestimat
EI

f . If the relaxation of the supercell were purely dilation
the elastic energy of this relaxation would beEel

5V0P2/2B, whereV0 is the equilibrium volume andP is the
pressure found in the fixed supercell calculation. Exami
tion of Table III shows thatEel provides a measure of th
effect of the supercell size onEI

f . The overall convergence
of the first-principles calculation in Table III is faster than
studies with empirical potentials35,36 ~see also below!, where
typically thousands of atoms are included in the supercel

FIG. 2. Variation of thê 111&-dumbbell self-interstitial formation energyEI
f

with the linear dimension of the cubic supercell. In fixed cell data,
internal coordinates of the atoms are fully relaxed but the cell size and s
are fixed, whereas in variable cell data, both the internal coordinates an
size/shape of the cell are relaxed.
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similar convergence check for thê100&-dumbbell self-
interstitial also suggests that a 43434 supercell is sufficient
to ensure convergence to within 0.05 eV~see Table III!.

Table IV shows the interstitial formation energiesEI
f for

all of the interstitials in Fig. 1 evaluated with the fixed
volume 43434 supercell. The stable self-interstitial in V i
either a^111& dumbbell or a crowdion. The very small dif
ference in energy (&0.01 eV) between thê111& dumbbell
and the crowdion is beyond the accuracy of density fu
tional calculations. The prediction that the^111& dumbbell is
the most stable interstitial contradicts earlier results obtai
using EAM/FS potentials.18,19,20The ^110& dumbbell, which
is the most stable interstitial in some of the EAM studies, h
the third smallest formation energy. Furthermore, the p
dicted magnitude ofEI

f ~3.14 eV! is well below that found in
previous EAM/FS calculations~4.61–4.78 eV!.

The physics underlying the relative values ofEI
f for the

^111&, ^110&, ^100& dumbbells can be understood by exam
ing the type of strain produced by these differently orien
dumbbells. In each case, the predominant deformation
uniaxial strain along the direction of symmetry of the dum
bell. This suggests that the modulus associated with unia
strain in the direction of the dumbbell,M ^ i jk & , should be
correlated with the formation energy. This is confirmed
Table V which shows that theoretical and experimental v
ues ofM ^ i jk & are exactly of the same order as theEI

f of the
corresponding dumbbell~see Table IV!.

No direct experimental data exist from which we c
determine the symmetry of the self-interstitial in V. Howeve
it is well known from radiation-damage experiments that t
migration barrier of the self-interstitial is very small
(,0.01 eV) and that diffusion occurs even at 4 K.37 The
first-principles data, presented above, suggest that the lo
activation energy migration path for the^111& dumbbell cor-
responds to a transformation from a^111& dumbbell to a
crowdion ~i.e., the transition state! before and then back
again to â 111& dumbbell. The diffusion barrier for this pat
is simply the difference inEI

f between thê111& dumbbell
and the crowdion configuration. As shown in Table IV, th
energy is very small (;0.01 eV), consistent with experi
ment. Interestingly, these results suggest that at low temp
tures, self-interstitial diffusion should be one dimension
~along the^111& direction!. The transition state for rotation
from a given^111& direction to another corresponds to th
^110&-dumbbell configuration. Therefore, the activation e

pe
the
e.

of the
gy
.

TABLE III. Convergence ofEI
f for the ^111&-dumbbell self-interstitial in V with respect to the supercell siz

EI
f(1) andEI

f(2) indicate the formation energy for the fixed and relaxed cells, respectively.Eel is the elastic
energy assuming dilational relaxation of the supercell.Nk is the number ofk points sampled in the first BZ. The
energies and pressure (P) are in eV and GPa, respectively. We define the pressure as minus one third
trace of the stress tensor for the fixed cell.DEI

f @5EI
f(1)2EI

f(2)# indicates the change in the formation ener
when the cell is relaxed. For comparison, the convergence of the^100& dumbbell is shown in the last column

Supercell size Natom Nk EI
f(1) P Eel EI

f(2) DEI
f EI

f(1)@100#

2a032a032a0 16(11) 64 4.49 17.3 0.80 3.46 1.03 5.86
3a033a033a0 54(11) 27 3.28 4.6 0.23 2.99 0.29 3.91
4a034a034a0 128(11) 8 3.14 1.4 0.06 3.10 0.04 3.57
5a035a035a0 250(11) 8 3.12 0.5 0.01 3.06 0.06 3.57
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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ergy for dumbbell rotation should be 0.44 eV~see Table IV!.
This suggests that at a sufficiently high temperature,
dumbbell should exhibit three-dimensional diffusion.

B. Monovacancy

Unlike the self-interstitial, a monovacancy creates re
tively small simple~i.e., centro symmetric! distortion. A 3
3333 supercell is sufficient to study the isolated monov
cancy when relaxing both internal coordinates and super
size/shape. We used 4k points in the irreducible BZ wedge
Earlier studies on vacancies in tantalum38 and tungsten39

suggest that this is sufficient to obtain adequate converge
for the formation energy. The vacancy formation energyEV

f

can be computed as

EV
f 5Etot~N21!2

N21

N
Etot~N!, ~5!

where Etot(N21) and Etot(N) are the total energies of th
system with and without a vacancy, respectively. Our cal
lated formation energy is 2.6 eV of which 0.07 eV com
from the volume relaxation. This is within the error bar
the experimentally determined vacancy formation ene
2.260.4 eV.40 By assuming that the transition state is mi
way between two nearest neighbor atom positions along
^111& direction, we estimate the monovacancy migration
ergy as 0.33 eV, which is close to the estimated experime
value of 0.5 eV.40

IV. INTERATOMIC POTENTIALS

A. Fitting method

A surprising result of the first-principles calculations
that the self-interstitial formation energy is much smal
than previously predicted on the basis of atomistic simu
tions using EAM/FS potentials~cf. Tables I and IV!. These
potentials modeled the nearest neighbor approach using
high pressure data from electronic structure calculations19 or
from the ‘‘universal equation of state.’’41 Such input data
correspond to purely hydrostatic deformation~i.e., one that
equally compresses all eight bonds around each atom!, while
deformation along â111& dumbbell is more closely uniaxia
~i.e., corresponding to compressing only two oppos

TABLE IV. The formation energies of the interstitials in Fig. 1.

^100&
dumbbell

^110&
dumbbell

^111&
dumbbell

^111&
crowdion Octahedral Tetrahedra

EI
f 3.57 3.48 3.14 3.15 3.62 3.69

TABLE V. Theoretical values for the moduli associated with uniaxial stra
M ^111&5(C1112C1214C44)/3, M ^110&5(C111C12)/21C44 , and M ^100&

5C11 , whereC11 , C12 , andC44 are the elastic constants of the vanadiu
single crystal. Units are in eV/Å3.

M ^111& M ^110& M ^100&

Theory 1.38 1.46 1.69
Experiment 1.33 1.35 1.43
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bonds!. The implication is that it is more than eight time
harder to compress eight neighboring atom bonds toge
than it is to compress two. This can, in turn, be traced t
fundamental misconception in fitting empirical potentia
namely, that the short range repulsion is due to pairw
overlap of core electrons. This can be clearly seen in
predictions of pseudopotential calculations which spec
cally exclude this effect, and show that the energy cost
compression arises primarily from the increased kinetic
ergy of the electrons. This observation does not, of cou
invalidate previous potentials. Rather, it is essentially a tra
fer problem, and merely indicates that we should not exp
a potential fitted to high pressure data to perform well
applications involving the close approach of atoms witho
hydrostatic compression of the lattice. In EAM/FS forma
ism, this suggests that some of the resistance to compres
is intrinsically many body, and so for the study of defe
fitting should be done to interstitial energy rather than to h
pressure data.

For this work, we parameterized a potential for van
dium following FS formalism of the second-moment a
proximation to tight-binding theory, which is valid fo
d-band transition metals where charge transfer
unimportant.42 The basic equation for the energy of an ato
( i ) is given by43

Ei5
1
2(

j
V~r i j !2r i

1/2, ~6!

where

r i5(
j

f~r i j !. ~7!

We use a cubic spline representation of the functionsV(r i j )
andf(r i j ) given by

V~r !5 (
k51

6

ak~r k2r !3H~r k2r !, ~8!

f~r !5 (
k51

2

Ak~Rk2r !3H~Rk2r !, ~9!

where r k and Rk are knot points such thatr 1.r 2.r 3.r 4

.r 5.r 6 andR1.R2 . H(x) is the Heaviside step function
H(x)50 for x,0 andH(x)51 for x.0. We fit six param-
eters ~the r k and Rk are fixed! exactly44 to reproduce the
three cubic elastic constants, the cohesive energy, the la
parameter and the unrelaxed vacancy formation energ
vanadium. These quantities are summarized in Table VI.

The fit to the vacancy formation energy was made
the energy of an unrelaxed vacancy using a Taylor expan
for the many-body part (EV

f ,u), and subtracted from the co
hesive energy. Assuming the range extends to second ne
bors @x15()/2)a0 ; x25a0# this has an analytic form of

Ecoh2EV
f ,u514A8f~x1!16f~x2!

28A7f~x1!16f~x2!

26A8f~x1!15f~x2!, ~10!

'
1

2
A8f~x1!16f~x2!. ~11!

,

AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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TABLE VI. Data used to fit the vanadium potential. The elastic moduli are from compilation by Simmons
Wang ~Ref. 45!, and the unrelaxed vacancy formation energy and the cohesive energy are from the p
first-principles calculations.

Quantity a ~Å! Ecoh ~eV! C11 (eV/Å3) C12 (eV/Å3) C44 (eV/Å3) EV
f ,u ~eV!

Value 3.03 5.3 1.42 0.743 0.269 2.85
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Only after the potential has been constructed is it possibl
fully relax the vacancy. With previous vanadium potential19

the relaxation energy has been about 0.25 eV. We assum
similar value would apply here, so we setEV

f ,u5EV
f

10.25 eV for fitting, taking EV
f 52.6 eV from the first-

principles data. We take the value ofEcoh from the calori-
metric data.46 The Cauchy pressureC122C44 also depends
on the many-body term only, and withEcoh2EV

f ,u it provides
a set of two linear equations forA1 andA2 . The equilibrium
value ofr is fully determined by the difference betweenEV

f ,u

and Ecoh: r052(Ecoh2EV
f ,u)2. This is true for any EAM

model when the ‘‘squared’’ operator is replaced by the
verse of the embedding operator. OnceA1 andA2 are fit, the
other quantities have a linear dependence onai .

With six constraints satisfied exactly, the problem is
duced to determining the two remaining free paramet
which we took to be the value of the ‘‘effective’’ potentia
@V(r i j )2f(Ri j )/Ar0# at the nearest neighbor separation a
the value ofa6 . These were adjusted to give the best fit
the difference in energy between bcc and face-centered-c
~fcc! structures,47 correct ordering of the interstitial forma
tion energy, the relaxation energy of the vacancy and
high pressure equation of state. The relaxation energy of
interstitials is much larger than that for the vacancy and
the case of dumbbells, the ‘‘unrelaxed’’ state cannot
uniquely defined because the dumbbell separation is a
trary. Similarly, the lattice parameter of the fcc phase was
fitted because it is not possible to express the fcc forma
energy analytically.

The fact that a reasonable fit to all these data can
obtained with two parameters indicates that fitting the fi
six quantities captures much of the physics of vanadium
similar result was obtained for iron.48 The fitted coefficients
are compiled in Table VII.

B. Point defect properties

The properties of the relaxed point defects were de
mined by minimizing the total energy with respect to
atomic coordinates using a conjugate-gradient method. P
odic boundary conditions were employed and the simula
cell size was varied to ensure that the formation energ
were independent of the cell size to the desired accur
~0.01 eV!. The convergence ofEI

f with the simulation cell
size using this potential is shown in Fig. 3. The variable c
EI

f converges to the asymptotic value from below, while th
for the fixed cell converges from above, as observed in
first-principles results in Fig. 2. The saturation of the form
tion energy occurs at a slightly larger supercell than that
the corresponding first-principles calculation.
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Table VIII shows the resultant point defect formatio
energies in vanadium. Excellent agreement between the
mation energies using the present potentials and fi
principles results was obtained in all cases~i.e., within 5% or
0.18 eV!. As in the first-principles results, the^111& dumbbell
and ^111& crowdion are degenerate in energy and repres
the most stable self-interstitial configurations. This result
in contrast with that obtained using other EAM/FS inte
atomic potentials~shown in Table I!, which show a variety of
stable self-interstitial configurations. As for the firs
principles results, the self-interstitial formation energies d
termined here are approximately 1 eV lower in energy co
pared with predictions made using other potentials. F
additional comparison, the distance between two atoms
compose a dumbbell is reported in Table IX for hig
symmetry self-interstitials. The agreement is within 5% a
it is even better when data are scaled by the lattice param
in each theoretical approach.

Perhaps a more sensitive test of the quality of the in
atomic potential is its ability to predict kinetic paramete
such as the activation energies for point defect migrati
The activation energies for vacancy migration determin
from the present potential, from first-principles calculation
and estimated from experimental data42 are 0.42, 0.33, and
0.5 eV, respectively. The activation energies for^111&-
dumbbell self-diffusion determined using this potential a
first-principles are 0.04 and 0.01 eV, respectively, while
experimental value is less than 0.01 eV~Ref. 39! ~recall in
Sec. III A that the first-principles results are not accurate
energies smaller than approximately 0.05 eV!. Three-
dimensional diffusion requires rotation of the^111& dumbbell
from one ^111& direction to another. The activation energ
for such a rotation is 0.41 and 0.34 eV based upon the
tential and first-principles calculations. In all of these cas
the agreement is very good, especially given the limits
accuracy of the first-principles calculations and the unc

TABLE VII. Fitted coefficients for the present vanadium potential@Eqs.~8!
and ~9!#. r k and Rk are in units of the bcc lattice parameter (a0) while
coefficientsak and Ak are in eV/a0

3 and eV2/a0
6, respectively. In order to

simulate primary knock-on events, modification of the short range poten
to, e.g., the Biersack form~Refs. 48 and 50! is used.

r 1 1.300 000 a1 271.861 297
r 2 1.220 000 a2 221.019 869
r 3 1.150 000 a3 2203.133 261
r 4 1.060 000 a4 118.249 184
r 5 0.950 000 a5 293.678 070
r 6 0.866 025 a6 141.643 266
R1 1.300 000 A1 26.834 293
R2 1.200 000 A2 6.118 468
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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TABLE VIII. Comparison of the formation energies of point defects in vanadium obtained using the Fin
Sinclair potential fitted here and first-principles results. Energies are in eV.

Vacancy
^100&

dumbbell
^110&

dumbbell
^111&

dumbbell
^111&

crowdion Octahedral Tetrahedral

First principles 2.60 3.57 3.48 3.14 3.15 3.62 3.69
FS ~present! 2.63 3.60 3.66 3.27 3.27 3.60a 3.64

aUnstable configuration; decays to a^100& dumbbell.
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tainty in the experimental data. Preliminary displacem
cascade simulations performed using the present interato
potential in a molecular dynamics~MD! simulation have
shown that the vast majority of the point defects genera
were vacancies and̂111&-dumbbell self-interstitials.49 This is
consistent with the predictions made above based upon s
relaxation using the potential~and first principles!. Addi-
tional MD simulations show the transition from on
dimensional̂ 111&-dumbbell diffusion at low temperature t
three-dimensional̂111&-dumbbell diffusion at high tempera
ture. These MD simulations further demonstrate that
present potential yields reasonable high temperature pro
ties.

C. Phonon spectrum

We have calculated the phonon spectrum that co
sponds to the present potential.51 We use the second deriva
tive of the potential to evaluate force constants and dyna
cal matrices.52 The many-body form of the potentia
introduces several extra terms into the force constants w
extends their effective range to double that of the potenti9

In principle, this could be used to fit the phonon spectru
but here no information about the phonons was included
the fitting process so the dispersion relation provides a se
test, although for use in radiation-damage simulations p
cise harmonic phonons near the zone boundaries are not
cial. Figure 4 show the predicted dispersion, calculated
0 K compared with the room temperature data from therm
diffuse scattering of x rays.53 In general, the potential is
slightly too soft, but the main discrepancy appears to be
the H point, where the potential underestimates the exp
mental value by 30%. Some of this can be attributed to th
mal effects, and the underestimate seems to be typica
other similar potentials.18

V. CONCLUSIONS

Modern multiscale modeling of radiation-damage ph
nomena relates atomic scale molecular dynamics simula
of cascades to point defect production and migration wh
in turn, feeds into kinetic Monte Carlo and rate equati
modeling of the temporal evolution of point defect distrib

TABLE IX. Comparison of the atomic separations of a dumbbell from fir
principles calculations and the present FS potentials. Units are in Å.

^100& ^110& ^111&

First principles 2.159 2.076 2.124
FS ~present! 2.103 2.167 2.190
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tions, and finally to the prediction of evolving mechanic
properties through dislocation dynamics and constitut
modeling. The results of such modeling can be no better t
its foundation. In many cases, this foundation is atomis
modeling based upon empirical or semiempirical desc
tions of the underlying atomic interactions. The embedd
atom method and FS potentials have become the most c
mon form of interatomic potentials used in large-sca
atomistic simulations of metals. These potentials are ty
cally fit to the properties of the perfect crystal and to vacan
formation energies. As such, no data are included in the fi
length scales much below that of the nearest neighbor s
ing in the perfect crystal. On the other hand, radiation da
age is based upon collision cascades that typically prod
interstitials, with nearest neighbor spacings which are c
siderably smaller. Therefore, it is not surprising that differe
interatomic potentials can lead to very different results
the properties of point defects that are central to prediction
radiation damage. Moreover, fitting the short range inter
tion from high pressure data incorporates different phys
from those required for interstitials, typically resulting in e
cessively high formation energies.

In order to build interatomic potentials appropriate f
radiation-damage studies in vanadium, we performed a se
of first-principles calculations designed to determine wh
types of interstitials are stable in V and to determine
relative formation energies of competing point defects. Th
large-scale first-principles calculations clearly show that
most stable type of interstitial is either a^111& dumbbell or
^111& crowdion, rather than thê110& dumbbell,^100& dumb-
bell, or octahedral or tetrahedral interstitials. Further, th
calculations also explained the large extent of interstitial d
fusion observed at very low temperature in vanadium.37 This
diffusion occurs via a one-dimensional random walk proc
in which the interstitials move from̂111&-dumbbell to^111&-
crowdion positions with an extremely low activation barrie
while at high temperature, rotations of the^111& dumbbell

FIG. 3. Convergence ofEI
f with the supercell size for thê111& dumbbell

using the potential developed here.
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



e

he
co
a

te
or
la
t
ts
th
a
es

f
tin
-
ho
pe
d,

th
th

m
n
op
e

fe

on
D
t a
te

r
b

e,

,

r.

h

s

://

s,

-

f the

f

th

3335J. Appl. Phys., Vol. 93, No. 6, 15 March 2003 Han et al.
from one orientation to another occur, giving rise to thre
dimensional diffusion.

The present FS type of potential was fit exactly to t
experimental values of the equilibrium lattice parameter,
hesive energy, and three elastic constants and an estim
unrelaxed vacancy formation energy and two parame
were used to obtain the best fit to the set of interstitial f
mation energies determined from the first-principles calcu
tions. The potential was modified at very short ranges
ensure the appropriate form for primary knock-on even
The resultant potential was then tested by comparing
heats of formation of six interstitial configurations and a v
cancy obtained using the potential and from first principl
The agreement is uniformly excellent~to within the accuracy
of the first-principles calculations!, both in the magnitude o
the energies and in the relative ordering of the compe
structures. Further, thê111&-dumbbell migration and rota
tion energies and the vacancy migration energy also s
excellent correspondence between the calculations
formed with the potential, with the first-principles metho
and from experiment~where available!. The ability to predict
the seven point defect interstitial formation energies and
three migration energies without decreasing the quality of
fit to the perfect crystal data with only two additional para
eters demonstrates the robustness of the present pote
This vanadium is capable of describing the point defect pr
erties appropriate for radiation-damage simulations as w
as for simulations of more common crystal and simple de
properties.
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