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Experimental Details 

Materials: Three aluminum (Al) foils with different purities (99.999% (containing 0.3 Cu, 0.3 

Fe, 1.2 Si, 0.8 Mg (ppm)), 99.5% (containing < 500 Cu, < 4000 Fe, < 3000 Si, < 1000 Zn 

(ppm)), 99.0% (containing < 1000 Cu, < 7000 Fe, < 5000 Si, < 1000 Zn (ppm))) were supplied 

by Goodfellow. Each of the foils had a distinct component ratio of impurities containing Cu, 

Fe, Si and Mg. Oxalic acid (C2H2O4), perchloric acid (HClO4), ethanol (C2H5OH), phosphoric 

acid (H3PO4), and chromium trioxide (CrO3) were used. Ultrapure water (Milipore) was used 

for preparing all the solutions used in this study. 

Fabrications of porous anodic alumina: The Al foils were degreased in acetone and washed 

in deionized water. Then, the foils were electrochemically polished in a mixture of perchloric 

acid (HClO4) and ethyl alcohol (C2H5OH) (1: 4 in volume ratio) at constant potential of 10 V 

to diminish the roughness of the aluminum surface. The samples were anodized in a 0.3 M 

oxalic acid solution at 40 V, at constant temperature of 10 °C. After anodization, the alumina 

film was chemically removed by a mixture of 6 wt% H3PO4 and 1.8 wt% CrO3 at 50 °C for 30 

min. The second anodization was carried out under the initial condition. Formed pores were 

opened in a same mixture of etching solution at 30 °C for 10 min. A double walled bath system 

with a circulating refrigerant maintaining constant electrolyte temperature was employed, and 

a carbon electrode was used as the counter electrode for the electrochemical reaction. 

Characterization: The morphology and the pore characteristics of the porous alumina films 

were examined using a field emission scanning electron microscope (FE-SEM) after coating 

the samples with platinum. Energy dispersive X-ray spectroscopy (EDX) analysis was 

performed to evaluate the impurities in the anodic alumina film. 



Simulation modelling: The electric field distribution was simulated by a steady-state current 

continuity equation using COMSOL Multiphysics software. The electric potential and electric 

field distribution in the film need to be solved by the ionic current model since the Al3+ and O2- 

ions migrate through the oxide in the strong electric field. For one-dimensional film geometry, 

the current density (J) in the oxide changes exponentially depending on the electric field (), 

i.e., 
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,where J0 and B are constants depending on the material for given temperature. The shape of 

the oxide in the film resembles a test tube, with a uniform circular cross-section. The geometric 

domain in the simulation was confined to the oxide layer by neglecting the potential drop in 

the solution. The shape of the oxide was characterized by the inner radius (oxide-solution 

interface), outer radius (metal-oxide interface) and the angle from the pore axis to the ridge-

top, which were determined by the experimental results (Fig. S3 in the supplementary 

information). Since we neglected the voltage drop in the solution, the potential at the interface 

between the oxide and the solution was zero. The potential at the oxide-metal interface was set 

to the applied anodizing potential. We assumed that the shape of an impurity in the film was 

circular and that the impurity was difficult to ionize in the oxide layer, and did not migrate 

freely through the oxide layer. 

 

 

 

 

 



 
 

Fig. S1. Characteristic parameters of the porous anodic alumina anodized in a two-step process 

in 0.3 M oxalic acid at a temperature of 10 °C and a voltage of 40 V for 3 h using Al foils of 

different purity: (a) defect (%), (b) pore diameter, and (c) film thickness. 

 

 

 

 

 

 

 

 

 
 

Fig. S2. (a) Top-view SEM image of porous anodic alumina anodized in a two-step process 

(0.3 M oxalic acid at 10 °C and 40 V for 3 h) using Al99.0; (b) EDX analysis of the impurity 

composition in white squared area of (a); red = Al, green = O, and violet = Si. 

 

 

 

 

 



 

Fig. S3. (a) Top-view and cross-section schematic illustration of the geometric parameter of 

the pore channel. Side view SEM images of porous anodic alumina anodized in a two-step 

process (0.3 M oxalic acid at 10 °C and 40 V for 3 h) using Al foils of different purity. The 

geometric parameters employed in the simulation are the following: outer radius (R), inner 

radius (r), and the angle (θ) from the pore axis to the ridge-top. (b) Anodized Al99.999; R = 59 

nm, r = 18 nm, θ = 45°. (c) Anodized Al99.5; R = 65 nm, r = 23 nm, θ = 46°. (d) Anodized Al 

99.0; R = 64 nm, r = 18 nm, θ = 44°.  

 

 

 

 

Fig. S4. SEM images of porous anodic alumina anodized in a two-step process (0.3 M oxalic 

acid at 10 °C for 1 h) using Al foils of different purity: (a), (d) 99.999%, (b), (e) 99.5%, and 

(c), (f) 99.0% at applied voltages of (a)–(c) 30 V, and (d)–(f) 50 V.  

  


