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ABSTRACT: The neural network interatomic potential (NNP) is anticipated to be a
promising next-generation atomic potential for its self-learning capability and universal
mathematical structure. While various examples demonstrate the usefulness of NNPs,
we find that the NNP suffers from highly inhomogeneous feature-space sampling in the
training set. As a result, underrepresented atomic configurations, often critical for
simulations, cause large errors even though they are included in the training set. Using
the Gaussian density function (GDF) that quantifies the sparsity of training points, we
propose a weighting scheme that can effectively rectify the sampling bias. Various
examples confirm that GDF weighting significantly improves the reliability and
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transferability of NNPs compared to the conventional training method, which is
attributed to accurate mapping of atomic energies. By addressing a detrimental problem that is inherent in every machine
learning potential, the present work will extend the application range of the machine learning potential.

y revealing atomic trajectories, classical molecular

dynamics (MD) simulations have greatly advanced
fundamental understanding of various chemical processes at
the atomistic level. In classical MD, the chemical bonds are
approximated by interatomic potentials that are parametrized
by fitting key properties to experimental and ab initio data.'
The functional form of the interatomic potentials reflects the
underlying bonding nature such as ionic, covalent, and metallic
characters. In many materials, however, the bonding nature is
rather mixed, which makes it difficult to choose a proper
function type. By describing reactive events with flexible
functional forms, the reactive force field (ReaxFF) has
significantly extended the application range of the classical
MD simulations.” However, ReaxFF still relies on human
intuition in introducing additional energy terms, which renders
the potential generation a formidable task, especially for
multicomponent systems.

Recently, the machine learning (ML) potential is gaining
traction as a data-driven approach to generating interatomic
potentials. In contrast to traditional interatomic potentials with
preset analytic functions, the ML potentials assume general
and flexible mathematical structures such as a neural
network™ or Gaussian process regression,”® and their
parameters are optimized through ML on extensive ab initio
data. In particular, a good deal of interest is given to the high-
dimensional neural network potential (NNP) suggested by
Behler and Parrinello” that has been apphed to a wide range of
materials encompassing metals, oxides,” semiconductors, "’
and molecular reactions.'' Furthermore, several studies
demonstrated the performance of NNPs in complex systems
such as surface reactions,'**? phase transitions,'* diffusion of
Li in amorphous oxides,"> proton transfer in aqueous
solution,'® and solid—liquid interfaces.'””'®
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In the high-dimensional NNP, the total energy is
represented as a sum of atomic energies that depend on the
local environment of each atom. The local atomic config-
uration is in turn described by the symmetry function vector G
that encodes the radial and angular distribution of neighboring
atoms within a certain cutoff radius.”'” The atomic energy is
then obtained through the feed-forward artificial neural
network with G as the input layer. That is to say, G
corresponds to the feature space in the atomic neural network.
The parameters in the NNP are optimized through learning ab
initio [preferentially density functional theory (DFT)] energies
and forces for specific structures (called the training set) that
typically consist of crystalline structures with various
deformations, surfaces, defects, and MD snapshots. Each
atom in the training set represents a certain training point in
the feature space G. The optimization algorithm minimizes the
following loss function (")

F = F + I}orce

energy

1 EDFT NNP 2 M M
DFT NNP 2
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(1)
where N is the total number of structures in the training set
and n; and EPFTONP) are the number of atoms and DFT
(NNP) energy of the ith training structure respectively. In eq

1, j is the index for atoms in the whole training set whose total
number is M, and FDFT(NNP) is the DFT (NNP) force of the
jth atom. In addltlon, 4 determines the relative weight between
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the energy loss function (Fenergy) and the force loss function
(F force)‘

While the NNP is getting popular, the weakness and
strength of the NNP are not fully understood at this moment,
mainly because of its “black-box” nature. For example, it was
recently noted that the prediction error of NNP increases in an
uncontrollable way as the local environment deviates from
{G} in the training set.”””' In the present work, we raise
another critical issue in training NNPs, i.e., the distribution of
{Gi} in the training set is highly inhomogeneous and biased.
This results in unbalanced training, which significantly
undermines accuracy and reliability of NNP. We propose an
effective method that equalizes the learning level over {G} in
the training set, thereby substantially improving the reliability
as well as transferability of the NNP.

We first demonstrate the inhomogeneous distribution of
{G;} with an example of crystalline Si with one vacancy (see
Figure la). The training set was generated by performing
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Figure 1. NNP training for crystalline Si with one vacancy. (a)
Atomic structures used in training. The defective atoms surrounding
the vacancy are marked in red. (b) Distribution of training points in
the G space. G, and G, indicate a radial component and an angular
component, respectively, that are selected out of 26-dimensional
coordinates of G. The number of training points is enumerated on the
20 X 20 mesh and color-coded on the log scale. (c) GDF value versus
force error for each training point. The data are interval-averaged
along the GDF, and error bars are standard deviations. (d) Vacancy
migration barrier calculated by the NEB method. The energy of the Si
vacancy at equilibrium is set to zero.
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DFT-MD simulations on the 63 atom supercell for 16 ps with
the temperature varying from 500 to 1300 K and sampling the
snapshots every 20 fs. (See the Supporting Information for
details.) In total, 50400 points were sampled in the feature
space, and 90% of them were randomly selected and used for
training the NNP. Figure 1b shows the frequency of G; on the
G,—G, plane on the log scale, where G, and G, correspond to
a radial component and an angular component, respectively.'’
(Other components also show similar distributions.) The
distributions of four-fold-coordinated bulk Si atoms and three-
fold-coordinated defective Si atoms neighboring the vacancy

22791

site (red atoms in Figure 1a) are displayed separately. It is
striking in Figure 1b that the distribution is highly biased and
concentrated within a narrow range of G. First, most G vectors
belong to bulk Si atoms. This is because training structures
contain far more bulk atoms than defective ones (59 versus 4).
In addition, the sampling is concentrated around the
equilibrium point, which is a result of the Boltzmann
distribution.

Because the NNP learns on {Gj} in the training set, the
inhomogeneous distribution enforces the NNP to be
optimized toward specific configurations (bulk and equili-
brium), sacrificing accuracy for underrepresented configura-
tions (defect or off-equilibrium). In order to investigate this
quantitatively, we define a Gaussian density function [GDF;
p(G)] defined for an arbitrary G in the symmetry-function
space as follows

M

p@)=— %

j=1

116 -GP
expl —————

where o is the Gaussian width and D is the dimension of the

symmetry function vector (ie., G € [RD). Other notations are
the same as those in eq 1. Equation 2 implies that the value of
p(G) ranges between 0 and 1; values close to 0 (or 1) mean
that training points are scarce (or abundant) around the
specific G. Figure S2 in the Supporting Information shows that
the GDF well represents the actual distribution of G.

Figure 1c shows the remnant force error for each atom (AFI-
= |F}DFT - FINNpl after training the NNP with the conventional
loss function in eq 1 (NNP-c hereafter). (See the Supporting
Information for details of training the NNP.) For visual clarity,
AF/s are interval-averaged with respect to the GDF (see
circles). It is seen that the force error increases for atoms with
small GDF values and the root-mean-square error (RMSE) of
defective Si is 0.27 eV/A, much larger than 0.18 eV/A for the
bulk atoms. These force errors are for the training set and
hence evidence the unbalanced training between bulk atoms
and undersampled defective atoms. Figure 1d shows the energy
barrier of vacancy migration calculated by the nudged-elastic-
band (NEB) method.”> Even though trajectories of the
vacancy migration are included in the training set (the vacancy
migrates several times at temperatures higher than 1000 K
within the present simulation time), the NNP overestimates
the energy barrier by 50 meV, which will significantly
underestimate the diffusion coefficient of the vacancy.

We stress that the inhomogeneous distribution of {Gj}
persists for any reasonable choice of training sets. For instance,
nonbulk structures such as surfaces and defects are under-
represented in general because they should be modeled
together with bulk atoms that outnumber the atoms under
the interested environment. In addition, breaking and forming
of bonds, critical in chemical reactions, are rare events and
occur only a few times during long-time MD simulations.

In ref 23, the redundancy of atomic environments in the
training set was also noted, and a solution was proposed on the
basis of force-amplitude sampling. However, the method still
risks omitting critical configurations. The sampling bias could
also be overcome through eflicient but deliberate sampling
around an atypical configuration.”*~*° However, this approach
has limitations because it is tricky to construct training models
that consist of only specific configurations. In the below, we
suggest a simple but very effective method that improves the
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training uniformity for the given training set without additional
sampling.

In order to alleviate the unbalanced training, it is necessary
to enhance the influence of undersampled local environments.
We first note that GDF defined in eq 2 can detect the scarcity
of training points around a specific G point. In addition, while
the DFT energy per se cannot be split into local atomic
energies, the DFT forces are obtained for individual atoms.
Exploiting these two facts, we modify the loss function as
follows

N DET NNP \2 M
1 E; — E.
FZE z (%] + Z %)
, n,

i=1 i

DFT NNP;2
3 i —F | 3)
By choosing ® in eq 3 as a monotonically increasing function,
one can magnify the influence of G;'s with small GDF values
on the loss function. Among various choices of ®, we select a
modified sigmoid function as it produced the best results in

various cases
Ax
1+ e ¥t 4)

where A is a normalizing constant that makes the average of ®
to be 1 and b and ¢ are parameters that are fine-tuned for
balanced training (chosen to be 150 and 1.0, respectively, in
this work). In the below, we demonstrate how the modified
loss function rectifies the unbalanced training.

Figure 1c shows that the NNP with GDF weighting (NNP-
GDF hereafter) gives more uniform errors over the whole
range of GDFs and the average force errors at G’s with GDF <
1072 are less than 0.3 eV/A. The RMSEs of defective and bulk
atoms are 0.19 and 0.18 eV/A, respectively, which are more
even than those in NNP-c (see above). It is also noticeable that
the average force error slightly increases for GDF > 10", This
supports that the GDF weighting effectively increases
(decreases) the influence of underrepresented (overrepre-
sented) G points. (The force errors on the test set also confirm
a similar effect of GDF weighting.) In Figure 1d, the migration
barrier by NNP-GDF agrees with the DFT result within 3
meV.

We also confirm benefits of the GDF weighting with the
example of Si interstitials; the training set is generated by
carrying out DFT-MD simulations with the 65 atom supercell
including one interstitial atom at temperatures from 500 to
1300 K. Like in the vacancy example, force errors for
interstitials are much larger than those for bulk atoms in
NNP-c, but errors become more even when GDF weighting is
applied. (See the Supporting Information for details.) To
further check the accuracy of the NNP, we scan the potential
energy surface (PES) of the Si interstitial around the
equilibrium point (see Figure 2). The PES is obtained by
displacing the interstitial atom on a spherical surface with a
radius of 0.6 A while other atoms are fixed. Comparing PESs
from DFT, NNP-c, and NNP-GDF (Figure 2b—d, respec-
tively), one can see that NNP-GDF gives a PES closer to the
DEFT result than NNP-c.

Furthermore, the GDF weighting improves the stability of
NNP-MD simulations. For instance, MD simulations with a Si
interstitial using NNP-c’s trained in the above failed repeatedly
within 1 ns for temperatures above 1200 K and resulted in
unphysical structures (see Figure S4a in the Supporting
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Figure 2. PES of the tetrahedral Si interstitial around the equilibrium
point. (a) Angular coordinates of the displaced interstitial. The radial
distance from the equilibrium point is 0.6 A. (b—d) PESs as a function
of angular coordinates calculated by DFT, NNP-c, and NNP-GDF,
respectively. The energy is referenced to the value at equilibrium for
each method.

Information). This can be understood as follows: the
configurations with large vibrational amplitudes occur during
MD at high temperatures but they are underrepresented due to
the Boltzmann factor. This leads to large and unpredictable
force errors. In contrast, MD with NNP-GDF run stably for a
much longer time (see Figure S4b in the Supporting
Information).

Figure 3 schematically depicts the main idea of the present
method using the diagram of energy versus configuration
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Figure 3. Schematic picture showing training and prediction
uncertainty of the NNP when the sampling density is inhomogeneous.
The training points are indicated by circles. (a) Conventional training.
(b) Training with GDF weighting.

coordinates. The training points indicated by circles are
concentrated near the energy minimum or equilibrium point.
In the conventional training (Figure 3a), training and
prediction uncertainties (shaded region) increase rapidly for
underrepresented points. Through GDF weighting (Figure
3b), the uncertainty level becomes more even throughout the
training range regardless of the sampling density. This also
implies that the GDF weighting will effectively improve the
transferability of NNP because new configurations lie outside
of the training set (see stars in Figure 3) and NNP-GDF would
give a prediction error smaller than NNP-c. This schematic
idea can be confirmed with actual systems by estimating the
prediction uncertainty from multiple NNPs trained on the
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same data.””*' The detailed information on the example of Si

is provided in Figure S7 in the Supporting Information.

For a fixed size of neutral network, it is unavoidable to
sacrifice the accuracy of the PES in some part in order to
improve the accuracy in another part. This means that the
GDF weighting can undermine the accuracy of physical
properties at the equilibrium point with high GDF values (the
bottom region in Figure 3). For instance, Figures 1c and S3c
show that the force error slightly increases for G’s with high
GDF values. To check how the equilibrium property is actually
affected by GDF weighting, we additionally compare
equilibrium properties such as the lattice parameter, bulk
modulus, phonon dispersion curve, and phonon DOS for
crystalline Si between DFT, NNP-c, and NNP-GDF. The
results are provided in Figures SS and S6 and Table S2 of the
Supporting Information. While the phonon dispersion curve
from NNP-c is slightly more accurate than that from NNP-
GDF, the overall accuracy of NNP-c and NNP-GDF are
comparable for the equilibrium property.

As another test, we calculate formation energies of vacancy
clusters when the training set includes only monovacancy
structures. This will probe the transferability of the NNP to
configurations that are slightly different from those in the
training set. We first train NNP-c and NNP-GDF with the
training set consisting of fcc Si structures that are prefect or
include one vacancy. (In detail, snapshots are sampled from
DFT-MD simulations with the temperature ramped from 500
to 1300 K and crystals with various deformations.) We then
calculate the formation energy (Ej,,) as Eg, = E(defect) — N-
E;, where E(defect) is the total energy of the N-atom
supercell with vacancies and E; is the total energy per atom of
the perfect fcc Si. The results are summarized in Table 1. Even

Table 1. Formation Energies of Vacancy Clusters in eV
Calculated by DFT, NNP-c, and NNP-GDF*

monovacancy trivacancy pentavacancy
DFT 3.59 7.14 9.87
NNP-c 3.34 (—6.8%) 7.83 (9.6%) 11.08 (12.2%)

NNP-GDF 345 (—4.0%) 10.19 (3.2%)

“The training set includes only monovacancy and crystalline
structures. the 2X2X2 supercells are used for mono- and trivacancies,
while the 3X3X3 supercells are used for the pentavacancy. The
vacancy clusters are generated by removing Si atoms connected in the
most compact way. The relative errors are indicated in parentheses.

7.09 (—0.6%)

for the monovacancy, NNP-GDF gives a smaller error than
NNP-c even though monovacancy structures are included in
the training set, implying that NNP-GDF learns on the vacancy
property better than NNP-c. More importantly, Table 1 shows
that the prediction error for larger vacancies increases for
NNP-c (up to 12.2%) while those for NNP-GDF remain
similar to that of the monovacancy. This demonstrates that
NNP-GDF has better transferability than NNP-c. The
enhanced transferability will allow for simplification of the
training set.

As mentioned in the introduction, NNP represents the DFT
total energy as a sum of atomic energies. Therefore, the
accuracy of the NNP ultimately lies in its ability to correctly
map out the atomic energies as a function of local
environments. It is worthwhile to investigate how the atomic
energy mapping is affected by GDF weighting. To this end, we
train NNPs on total energies and forces obtained by the

embedded-atom-method (EAM) potential for Ni*’ and
directly compare atomic energies from the NNP with those
from the EAM. The training set was generated for Ni vacancy
structures (499 atom fcc supercells with temperatures from 0
to 400 K).

Figure 4a shows the correlation of the atomic energies
between the EAM and NNP-c. While the overall agreements
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Figure 4. Correlation of atomic energies between the EAM and NNP.
The training set consists of MD snapshots of crystalline Ni with one
vacancy. (a) Result of conventionally trained NNPs. (b) Result of the
GDF-weighted NNP. (c) GDF versus mapping errors that are
interval-averaged. The error bar represents the standard deviation.

are good with a mean absolute error (MAE) of 3.3 meV, the
mapping is relatively inaccurate for defective Ni atoms (16.8
and 2.9 meV for the defective and bulk Ni atoms, respectively).
The mapping error with respect to the GDF in Figure 4c is
consistent with this. On the other hand, NNP-GDF maps the
atomic energy correctly for the whole range, as shown in
Figure 4b,c. This can be explained as follows: the atomic force
depends on the atomic energy function around the given
configuration. Therefore, by fitting atomic forces evenly from
underrepresented to overrepresented configurations, the GDF
weighting constrains the atomic energy mapping to be
consistent throughout all training points. The correct atomic
energy mapping would be the fundamental reason underlying
the better transferability of NNP-GDF. We note that the MAE
of the total energy is 0.035 meV/atom for NNP-GDF, larger
than 0.014 meV/atom for NNP-c. That is to say, NNP-GDF
trades accuracy in the total energy for consistency in the
atomic energy mapping.

We note that the data imbalance has been widely discussed
within the ML community.”® Suggested solutions are adding
more features to the training set that has been undersampled
(sometimes synthetic samples®) or leaving out some of the
features that have been oversampled. However, it is not
teasible to apply these methods to the present problem because
the NNP predicts the atomic energy while it is trained through
total energies that are the sum of atomic energies. This poses a
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unique challenge in training the NNP, which motivated us to
suggest the present method based on the GDF.

In a bigger picture, the GDF weighting contributes to
establishing a close correspondence between what one wants
the NNP to learn and what the NNP actually learns through
the training procedure, which is at the heart of every ML
potential. Clearly, the advantages of GDF weighting extend to
other systems. For example, we carried out similar analysis on
the Pd(111) surface with an oxygen adsorbate, which is a key
step in various catalytic reactions,”*° and reconfirmed the
merits of NNP-GDF (see the Supporting Information for
details). We also note that when used together with the
ensemble NNP approach in refs 20 and 21 the GDF weighting
will significantly reduce the iteration number to achieve a
converged set of NNPs. Lastly, inhomogeneous feature
sampling is a general issue for any ML potentials that adopt
local feature vectors as input. Therefore, the present method
can be equally applied to other types of NN potentials such as
deep tensor neural networks®" and deep potential,”* as well as
other ML potentials.”®
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